Solveeit Logo

Question

Mathematics Question on Application of derivatives

The angle of intersection between the curves y=[sinx+cosx]y=\left[\left|\sin\,x\right|+\left|\cos\,x\right|\right] and x2+y2=10,x^{2}+y^{2}=10, where [x][x] denotes the greatest integer =x,= x, is

A

tan1(3)\tan^{-1}\, (3)

B

tan1(3)\tan^{-1}\, (-3)

C

tan13\tan^{-1}\sqrt{3}

D

tan1(1/3)\tan^{-1}\left(1/\sqrt{3}\right)

Answer

tan1(3)\tan^{-1}\, (3)

Explanation

Solution

Given, y=[sinx+cosx]y=[|\sin x|+|\cos x|] and x2+y2=10x^{2}+y^{2}=10
We know that (sinx+cosx)[1,2](|\sin x|+|\cos x|) \in[1, \sqrt{2}]
y=1\therefore y=1
The point of intersection of given curve is x2+12=10x^{2}+1^{2}=10
x2=9\Rightarrow x^{2}=9
x=±3\Rightarrow x=\pm 3
\therefore Point of intersection is (±3,1)(\pm 3,1)
Now, x2+y2=10x^{2}+y^{2}=10
2x+2ydydx=0\Rightarrow 2 x+2 y \frac{d y}{d x}=0
dydx=xy\Rightarrow \frac{d y}{d x}=-\frac{x}{y}
At point (3,1)(-3,1)
dydx=31=3\frac{d y}{d x}=\frac{3}{1}=3
m1=3\Rightarrow m_{1}=3
Slope of line y=1y=1 is m2=0m_{2}=0
\therefore Angle between two curves is
tanθ=m1m21+m1m2=3\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} \,m_{2}}=3
θ=tan1(3)\Rightarrow \theta=\tan ^{-1}(3)