Solveeit Logo

Question

Question: The angle of intersection between the curves \[y=\left[ \left| \sin x \right|+\left| \cos x \right| ...

The angle of intersection between the curves y=[sinx+cosx]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right] and x2+y2=10{{x}^{2}}+{{y}^{2}}=10 , where xx denote the greatest integer x\le x , is
A.tan13{{\tan }^{-1}}3
B. tan1(3){{\tan }^{-1}}(-3)
C. tan13{{\tan }^{-1}}\sqrt{3}
D. tan1(13){{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)

Explanation

Solution

We need to find the angle of intersection between the curves y=[sinx+cosx]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right] and x2+y2=10{{x}^{2}}+{{y}^{2}}=10 . For this first find the range of y=[sinx+cosx]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right] . After that, we will be considering only the value of lower bound since xx denotes the greatest integer x\le x ,i.e. y=1y=1 . After that, substitute that value in x2+y2=10{{x}^{2}}+{{y}^{2}}=10 . Find its slope by differentiating. Then get the next slope by differentiating y=1y=1 . Now use the equation tanθ=m2m11+m1m2\tan \theta =\left| \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right| to get the value of the angle.

Complete step by step answer:
We need to find the angle of intersection between the curves y=[sinx+cosx]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right] and x2+y2=10{{x}^{2}}+{{y}^{2}}=10 .
Let us find the range of y=[sinx+cosx]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right] .
We know that the range of sinx\left| \sin x \right| is
0sinx10\le \left| \sin x \right|\le 1
And the range of cosx\left| \cos x \right| is
0cosx10\le \left| \cos x \right|\le 1
Therefore, range of y=[sinx+cosx]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right] can be found out as follows:
y=sinx+cosxy=\sin x+\cos xwherex(0,π2)x\in \left( 0,\dfrac{\pi }{2} \right) .
Now multiply and divide RHS by 2\sqrt{2} . So the above equation becomes,
y=2(12sinx+12cosx)...(i)y=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)...(i)
Now, sin(x+π4)=sinxcosπ4+cosxsinπ4\sin \left( x+\dfrac{\pi }{4} \right)=\sin x\cos \dfrac{\pi }{4}+\cos x\sin \dfrac{\pi }{4}
Solving, we get
sin(x+π4)=12sinx+12cosx\sin \left( x+\dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x
Therefore equation (i)(i) can be written as
y=2sin(x+π4)y=\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)
We know that sinx\sin x ranges from [1,1][-1,1] .
Therefore, 1sin(x+π4)1-1\le \sin \left( x+\dfrac{\pi }{4} \right)\le 1
Multiplying by 2\sqrt{2} we get
22sin(x+π4)2-\sqrt{2}\le \sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)\le \sqrt{2}
As sinx\left| \sin x \right| ranges from 0sinx10\le \left| \sin x \right|\le 1 , comparing with the above one, we get
y=[sinx+cosx]=[1,2]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right]=[1,\sqrt{2}]
It is given that xx denote the greatest integer x\le x . So we will consider the value y=1y=1 .
Given that x2+y2=10{{x}^{2}}+{{y}^{2}}=10 . Substituting the value of yy here, we get
x2+1=10x2=9{{x}^{2}}+1=10\Rightarrow {{x}^{2}}=9
x=±3x=\pm 3
Therefore, the intersection points are q(3,1)q(3,1) and p(3,1)p(-3,1) .

We need to find the slope of the tangent (±3,1)(\pm 3,1) to x2+y2=10{{x}^{2}}+{{y}^{2}}=10 .
Now differentiate x2+y2=10{{x}^{2}}+{{y}^{2}}=10 with respect to xx . We will get
2x+2ydydx=02x+2y\dfrac{dy}{dx}=0
x+ydydx=0\Rightarrow x+y\dfrac{dy}{dx}=0
dydx=xy\Rightarrow \dfrac{dy}{dx}=\dfrac{-x}{y}
Now for the point q(3,1)q(3,1) ,
dydxp(3,1)=3{{\left. \dfrac{dy}{dx} \right|}_{p(3,1)}}=-3
For the point p(3,1)p(-3,1) ,
dydxp(3,1)=3{{\left. \dfrac{dy}{dx} \right|}_{p(-3,1)}}=3
Therefore, slope m1=±3{{m}_{1}}=\pm 3 .
We have, y=1y=1 .
Differentiating yy with respect to xx , we get
dydxp=0{{\left. \dfrac{dy}{dx} \right|}_{p}}=0
That is, the slope m2=dydxp=0{{m}_{2}}={{\left. \dfrac{dy}{dx} \right|}_{p}}=0 .
Now, to find the angle of intersection, we have
tanθ=m2m11+m1m2\tan \theta =\left| \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right|
We will use in this case m2=3{{m}_{2}}=-3 as per the figure.
Substituting the value, we will get
tanθ=0(3)1+0×3=3=±3\tan \theta =\left| \dfrac{0-(-3)}{1+0\times -3} \right|=\left| 3 \right|=\pm 3
Taking inverse of tan\tan we will get the value of θ\theta .
Therefore, θ=tan13\theta ={{\tan }^{-1}}3 and θ=tan1(3)\theta ={{\tan }^{-1}}(-3) .
Hence the correct options are A and B.

Note:
In this question, it is not necessary to write the steps to get the range of y=[sinx+cosx]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right] .
We know that when sinx\sin x increases cosx\cos x decreases. So the maximum value cannot be obtained.
We know that at x=π4x=\dfrac{\pi }{4} both sinx\sin x and cosx\cos x will be the same, i.e, 12\dfrac{1}{\sqrt{2}} .
So y=sinx+cosx=12+12=2y=\sin x+\cos x=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}=\sqrt{2} .
Therefore, the maximum value of y=[sinx+cosx]=2y=\left[ \left| \sin x \right|+\left| \cos x \right| \right]=\sqrt{2} .
To find the minimum value, we know that minimum value of sinx=0\sin x=0 and that of cosx=1\cos x=1 .
Now y=[sinx+cosx]=0+1=1y=\left[ \left| \sin x \right|+\left| \cos x \right| \right]=0+1=1 .
Thus the range of y=[sinx+cosx]=[1,2]y=\left[ \left| \sin x \right|+\left| \cos x \right| \right]=[1,\sqrt{2}] .