Solveeit Logo

Question

Question: The angle of intersection between curve \(xy = 6\)and \(x^{2}y = 12\)...

The angle of intersection between curve xy=6xy = 6and x2y=12x^{2}y = 12

A

tan1(34)\tan^{- 1}\left( \frac{3}{4} \right)

B

tan1(311)\tan^{- 1}\left( \frac{3}{11} \right)

C

tan1(113)\tan^{- 1}\left( \frac{11}{3} \right)

D

0o0^{o}

Answer

tan1(311)\tan^{- 1}\left( \frac{3}{11} \right)

Explanation

Solution

The equation of two curves are xy=6xy = 6 and x2y=12x^{2}y = 12 from (i) we obtain y=6xy = \frac{6}{x} putting this value of yy in equation (ii) to obtain x2(6x)=12x^{2}\left( \frac{6}{x} \right) = 126x=126x = 12x=2x = 2

Putting x=2x = 2 in (i) or (ii) we get, y=3.y = 3. Thus, the two curves intersect at P(2, 3)

Differentiating (i) w.r.t. x, we get xdydx+y=0x\frac{dy}{dx} + y = 0dydx=yx\frac{dy}{dx} = \frac{- y}{x}

(dydx)(2,3)=32=m1\left( \frac{dy}{dx} \right)_{(2,3)} = - \frac{3}{2} = m_{1}

Differentiating (ii) w.r.t. x, we get x2dydx+2xy=0x^{2}\frac{dy}{dx} + 2xy = 0

dydx=2yx\frac{dy}{dx} = \frac{- 2y}{x}

(dydx)(2,3)=3=m2\left( \frac{dy}{dx} \right)_{(2,3)} = - 3 = m_{2}

tanθ=m1m21+m1m2=(32+3)(1+(32)(3))=311\tan\frac{\theta = \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} = \left( \frac{- 3}{2} + 3 \right)}{\left( 1 + \left( \frac{- 3}{2} \right)( - 3) \right)} = \frac{3}{11}

θ=tan1311\theta = \tan^{- 1}\frac{3}{11}.