Solveeit Logo

Question

Question: The angle of elevation of the top of a vertical tower from a point P on the horizontal ground was ob...

The angle of elevation of the top of a vertical tower from a point P on the horizontal ground was observed to be α\alpha . After moving a distance of 2 meters from P towards the foot of the tower, the angle of elevation changes to β\beta . Then the height (in meters) of the tower is:
(A) cos(βα)sinαsinβ\dfrac{{\cos \left( {\beta - \alpha } \right)}}{{\sin \alpha \sin \beta }} (B) 2sin(βα)sinαsinβ\dfrac{{2\sin \left( {\beta - \alpha } \right)}}{{\sin \alpha \sin \beta }} (C) 2sinαsinβsin(βα)\dfrac{{2\sin \alpha \sin \beta }}{{\sin \left( {\beta - \alpha } \right)}} (D) sinαsinβcos(βα)\dfrac{{\sin \alpha \sin \beta }}{{\cos \left( {\beta - \alpha } \right)}}

Explanation

Solution

Hint: Analyze the situation with a diagram. Use trigonometric ratios to find the distance of point P from the foot of the tower in both cases. And then compare both values to get the desired result.

Complete step-by-step answer:


Consider the above figure, let L be the initial distance of the foot of the tower from point P and h be the height of the tower.
As per the information given in the question, α\alpha is the angle of elevation of the top of the tower from point P.
From ΔPRS\Delta PRS shown above:
tanα=SRPR tanα=hL L=htanα.....(i)  \Rightarrow \tan \alpha = \dfrac{{SR}}{{PR}} \\\ \Rightarrow \tan \alpha = \dfrac{h}{L} \\\ \Rightarrow L = \dfrac{h}{{\tan \alpha }} .....(i) \\\
Now, after moving 2 meters towards the tower we reach another point Q. Then the distance between the foot of the tower and point Q is L2L - 2. And the angle of elevation of the top of the tower from point Q is given in the question as β\beta . So in ΔQSR\Delta QSR in the above figure:
tanβ=SRQR tanβ=hL2, L2=htanβ, L=htanβ+2.....(ii)  \Rightarrow \tan \beta = \dfrac{{SR}}{{QR}} \\\ \Rightarrow \tan \beta = \dfrac{h}{{L - 2}}, \\\ \Rightarrow L - 2 = \dfrac{h}{{\tan \beta }}, \\\ \Rightarrow L = \dfrac{h}{{\tan \beta }} + 2 .....(ii) \\\
Now, comparing equation (i)(i) and (ii)(ii), we have:
htanα=htanβ+2, h(1tanα1tanβ)=2,  \Rightarrow \dfrac{h}{{\tan \alpha }} = \dfrac{h}{{\tan \beta }} + 2, \\\ \Rightarrow h\left( {\dfrac{1}{{\tan \alpha }} - \dfrac{1}{{\tan \beta }}} \right) = 2, \\\
Taking tanαtanβ\tan \alpha \tan \beta as LCM, we’ll get:
h(tanαtanβtanαtanβ)=2, h=2tanαtanβtanαtanβ  \Rightarrow h\left( {\dfrac{{\tan \alpha - \tan \beta }}{{\tan \alpha \tan \beta }}} \right) = 2, \\\ \Rightarrow h = \dfrac{{2\tan \alpha \tan \beta }}{{\tan \alpha - \tan \beta }} \\\
Now we know that, tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, applying this we’ll get:

h=2×sinαcosα×sinβcosβsinαcosαsinβcosβ, h=2×sinαsinβcosαcosβsinαcosβcosαsinβcosαcosβ, h=2sinαsinβsinαcosβcosαsinβ  \Rightarrow h = \dfrac{{2 \times \dfrac{{\sin \alpha }}{{\cos \alpha }} \times \dfrac{{\sin \beta }}{{\cos \beta }}}}{{\dfrac{{\sin \alpha }}{{\cos \alpha }} - \dfrac{{\sin \beta }}{{\cos \beta }}}}, \\\ \Rightarrow h = \dfrac{{2 \times \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}{{\dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\cos \alpha \cos \beta }}}}, \\\ \Rightarrow h = \dfrac{{2\sin \alpha \sin \beta }}{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }} \\\

We know that, sinAcosBcosAsinB=sin(AB)\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right), applying this formula, we’ll get:
h=2sinαsinβsin(αβ)\Rightarrow h = \dfrac{{2\sin \alpha \sin \beta }}{{\sin \left( {\alpha - \beta } \right)}}
Therefore, the height of the tower is 2sinαsinβsin(αβ)\dfrac{{2\sin \alpha \sin \beta }}{{\sin \left( {\alpha - \beta } \right)}}. Option (C) is correct.
Note: We can use any of the trigonometric ratios to get the end results. But in this case, perpendicular and base are known for the given angles so it is convenient to use either tanθ or cotθ\tan \theta {\text{ or }}\cot \theta . If we want to use any other trigonometric ratios, then we have to determine hypotenuse first by using Pythagoras theorem.