Solveeit Logo

Question

Question: The angle of elevation of the top of a tower from a point A due south of the tower is \(A B = d\), t...

The angle of elevation of the top of a tower from a point A due south of the tower is AB=dA B = d, then the height of the tower is

A

dtan2αtan2β\frac { d } { \sqrt { \tan ^ { 2 } \alpha - \tan ^ { 2 } \beta } }

B

dtan2α+tan2β\frac { d } { \sqrt { \tan ^ { 2 } \alpha + \tan ^ { 2 } \beta } }

C

dcot2α+cot2β\frac { d } { \sqrt { \cot ^ { 2 } \alpha + \cot ^ { 2 } \beta } }

D

dcot2αtan2β\frac { d } { \sqrt { \cot ^ { 2 } \alpha - \tan ^ { 2 } \beta } }

Answer

dcot2α+cot2β\frac { d } { \sqrt { \cot ^ { 2 } \alpha + \cot ^ { 2 } \beta } }

Explanation

Solution

OB=hcotβO B = h \cot \beta

OA=hcotαO A = h \cot \alpha

h2=d2cot2β+cot2αh ^ { 2 } = \frac { d ^ { 2 } } { \cot ^ { 2 } \beta + \cot ^ { 2 } \alpha }

h=dcot2β+cot2αh = \frac { d } { \sqrt { \cot ^ { 2 } \beta + \cot ^ { 2 } \alpha } }