Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

The angle of elevation of a jet plane from a point A on the ground is 6060^{\circ}. After a flight of 20 seconds at the speed of 432km/432 km / hour, the angle of elevation changes to 30.30^{\circ} . If the jet plane is flying at a constant height, then its height is :

A

18003m1800 \sqrt{3} m

B

36003m3600 \sqrt{3} m

C

24003m2400 \sqrt{3} m

D

12003m1200 \sqrt{3} m

Answer

12003m1200 \sqrt{3} m

Explanation

Solution

tan60=hy\tan 60^{\circ}=\frac{ h }{ y } 3=hyh=3y(1)\sqrt{3}=\frac{ h }{ y } \Rightarrow h =\sqrt{3} y\,\,\,\, \ldots \ldots(1) tan30=hx+y\tan 30^{\circ}=\frac{ h }{ x + y } 13=hx+y\frac{1}{\sqrt{3}}=\frac{ h }{ x + y } 3h=x+y(2)\Rightarrow \sqrt{3} h = x + y\,\,\,\, \ldots \ldots(2) Speed 432km/h432×2060×60432 km / h \Rightarrow \frac{432 \times 20}{60 \times 60} 125km\Rightarrow \frac{12}{5} km 3h=125+y\sqrt{3} h =\frac{12}{5}+ y 3h125=y\sqrt{3} h -\frac{12}{5}= y from (1) h=3[3h125]h =\sqrt{3}\left[\sqrt{3} h -\frac{12}{5}\right] h=3h1235h=3 h-\frac{12 \sqrt{3}}{5} h=635kmh =\frac{6 \sqrt{3}}{5} km h=12003mh =1200 \sqrt{3} m