Solveeit Logo

Question

Physics Question on Magnetic Field Due To A Current Element, Biot-Savart Law

The angle between vector Q\vec{Q} and the resultant of (2Q+2P)(2\vec{Q} + 2\vec{P}) and (2Q2P)(2\vec{Q} - 2\vec{P}) is:

A

00^\circ

B

tan1(2Q2P2Q+2P)\tan^{-1}\left(\frac{2\vec{Q} - 2\vec{P}}{2\vec{Q} + 2\vec{P}}\right)

C

tan1(PQ)\tan^{-1}\left(\frac{P}{Q}\right)

D

tan1(2QP)\tan^{-1}\left(\frac{2Q}{P}\right)

Answer

00^\circ

Explanation

Solution

The resultant vector is given by:

R=(2Q+2P)+(2Q2P)=4Q\vec{R} = (2\vec{Q} + 2\vec{P}) + (2\vec{Q} - 2\vec{P}) = 4\vec{Q}

The angle between Q\vec{Q} and R\vec{R} is 00^\circ as they are in the same direction. Therefore, Option (1) is correct.