Solveeit Logo

Question

Question: The angle between two vectors given by \(6\bar{i} + 6\bar{j} - 3\bar{k}\) and \(7\overline{i} + 4\ov...

The angle between two vectors given by 6iˉ+6jˉ3kˉ6\bar{i} + 6\bar{j} - 3\bar{k} and 7i+4j+4k7\overline{i} + 4\overline{j} + 4\overline{k} is

A

cos1(13)\cos^{- 1}\left( \frac{1}{\sqrt{3}} \right)

B

cos1(53)\cos^{- 1}\left( \frac{5}{\sqrt{3}} \right)

C

sin1(23)\sin^{- 1}\left( \frac{2}{\sqrt{3}} \right)

D

sin1(53)\sin^{- 1}\left( \frac{\sqrt{5}}{3} \right)

Answer

sin1(53)\sin^{- 1}\left( \frac{\sqrt{5}}{3} \right)

Explanation

Solution

cosθ=ABAB=42+241236+36+949+16+16=56971\cos\theta = \frac{\overrightarrow{A}\overrightarrow{B}}{AB} = \frac{42 + 24 - 12}{\sqrt{36 + 36 + 9}\sqrt{49 + 16 + 16}} = \frac{56}{9\sqrt{71}}

cosθ=56971\cos\theta = \frac{56}{9\sqrt{71}}sinθ=53\sin\theta = \frac{\sqrt{5}}{3} or θ=sin1(53)\theta = \sin^{- 1}\left( \frac{\sqrt{5}}{3} \right)