Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The angle between two lines x +1 =y + 3 =z - 4 and x41\frac {x-4}{1} = y+22\frac {y+2}{2} = z+12\frac {z+1}{2} is

A

cos-1(49)(\frac {4}{9})

B

cos-1(29)(\frac {2}{9})

C

cos-1(19)(\frac {1}{9})

D

cos-1(59)(\frac {5}{9})

Answer

cos-1(59)(\frac {5}{9})

Explanation

Solution

To find the angle between two lines, we can use the direction vectors of the lines.For the first line, x + 1 = y + 3 = z - 4,the vector form is
r1 = (x, y, z) = (-1, -3, 4) + t(1, 1, 1)
The direction vector for this line is (1, 1, 1).
For the second line, x41\frac {x-4}{1} = y+22\frac {y+2}{2} = z+12\frac {z+1}{2}
the vector form is r2 = (x, y, z) = (4, -4, -12\frac {1}{2}) + s(1, 2, 12\frac {1}{2})
The direction vector for this line is (1, 2, 12\frac {1}{2}).To find the angle between two vectors, use the dot product formula:
cosθ =uvuv \frac {u · v}{|u| |v|}
calculate the dot product and magnitudes:
u · v = (1, 1, 1) · (1, 2, 12\frac {1}{2}) = 1 + 2 + 12\frac {1}{2} = 92\frac {9}{2}
|u| = 12+12+12\sqrt {1² + 1² + 1²} = 3\sqrt 3
|v| = 12+12+(12)2\sqrt {1² + 1² + (\frac {1}{2})^2} = 1+4+14\sqrt {1 + 4 + \frac {1}{4}} = 174\sqrt {\frac {17}{4}} = 172\frac {\sqrt {17}}{2}
cosθ = uvuv \frac {u · v}{|u| |v|} =923×172\frac {\frac {9}{2}}{\sqrt 3 \times \frac {\sqrt {17}}{2}} = 92\frac {9}{2} x 23.17\frac {2}{\sqrt 3 .\sqrt {17}}= 93.17\frac {9}{\sqrt 3 .\sqrt {17}} = 951\frac {9}{\sqrt {51}}
To determine the angle θ, we need to find the inverse cosine (arccos) of cosθ
θ = arccos(951)(\frac {9}{\sqrt {51}})
Therefore, the angle between the two lines is equal to cos-1(59)(\frac {5}{9}).