Solveeit Logo

Question

Mathematics Question on 3D Geometry

The angle between two lines whose direction ratios are proportional to 1,1,21, 1, -2 and (31),(31),4(\sqrt{3} - 1), (-\sqrt{3} - 1), -4 is:

A

π3\frac{\pi}{3}

B

π\pi

C

π6\frac{\pi}{6}

D

π2\frac{\pi}{2}

Answer

π3\frac{\pi}{3}

Explanation

Solution

The angle θ\theta between two lines whose direction ratios are given by d1=(1,1,2)\vec{d_1} = (1, 1, -2) and d2=(31,31,4)\vec{d_2} = (\sqrt{3} - 1, -\sqrt{3} - 1, -4) can be found using the formula:

cosθ=d1d2d1d2.\cos \theta = \frac{\vec{d_1} \cdot \vec{d_2}}{|\vec{d_1}||\vec{d_2}|}.

First, compute the dot product d1d2\vec{d_1} \cdot \vec{d_2}:

d1d2=(1)(31)+(1)(31)+(2)(4)=3131+8=6.\vec{d_1} \cdot \vec{d_2} = (1)(\sqrt{3} - 1) + (1)(-\sqrt{3} - 1) + (-2)(-4) = \sqrt{3} - 1 - \sqrt{3} - 1 + 8 = 6.

Next, compute the magnitudes of d1\vec{d_1} and d2\vec{d_2}:

d1=12+12+(2)2=1+1+4=6,|\vec{d_1}| = \sqrt{1^2 + 1^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6},

d2=(31)2+(31)2+(4)2=(323+1)+(3+23+1)+16=24=26.|\vec{d_2}| = \sqrt{(\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2 + (-4)^2} = \sqrt{(3 - 2\sqrt{3} + 1) + (3 + 2\sqrt{3} + 1) + 16} = \sqrt{24} = 2\sqrt{6}.

Thus, we have:

cosθ=66×26=612=12.\cos \theta = \frac{6}{\sqrt{6} \times 2\sqrt{6}} = \frac{6}{12} = \frac{1}{2}.

Therefore,

θ=cos1(12)=π3.\theta = \cos^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{3}.

Thus, the correct answer is:

π3\frac{\pi}{3}.