Solveeit Logo

Question

Mathematics Question on angle between two lines

The angle between two lines x+12=y+32=z41\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1} and x41=y+42=z+12\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2} is :

A

cos1(19)\cos^{-1} \left(\frac{1}{9}\right)

B

cos1(49)\cos^{-1} \left(\frac{4}{9}\right)

C

cos1(29)\cos^{-1} \left(\frac{2}{9}\right)

D

cos1(39)\cos^{-1} \left(\frac{3}{9}\right)

Answer

cos1(49)\cos^{-1} \left(\frac{4}{9}\right)

Explanation

Solution

The angle θ\theta between the two lines xx1a1=yy1a2=zz1a3\frac{x-x_{1}}{a_{1}} = \frac{y-y_{1}}{a_{2}} = \frac{z-z_{1}}{a_{3}} and xx2b1=yy2b2=zz2b3\frac{x-x_{2}}{b_{1} } = \frac{y-y_{2}}{b_{2}} = \frac{z-z_{2}}{b_{3}} is given by: cosθ=a1b1+a2b2+a3b3a12+a22+a32b12+b22+b32\cos\theta = \frac{a_{1}b_{1} +a_{2}b_{2} + a_{3} b_{3}}{\sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}} \sqrt{b_{1}^{2} + b_{2}^{2} + b_{3}^{2}}} Now in the given equation: a1=2,a2=2,a3=1a_{1} = 2 , a_{2} = 2, a_{3} = - 1 b1=1,b2=2,b3=2b_{1} = 1, b_{2}=2, b_{3} = 2 cosθ=2×1+2×2+(2)×14+4+14+4+1=49\therefore\cos\theta = \frac{2 \times1 +2\times 2+\left(-2\right)\times 1}{\sqrt{4+4+1}\sqrt{4+4+1}} = \frac{4}{9} θ=cos1(49)\Rightarrow \theta = \cos^{-1} \left( \frac{4}{9}\right)