Solveeit Logo

Question

Question: The angle between the two vectors \(\overrightarrow{A} = 3\widehat{i} + 4\widehat{j} + 5\widehat{k}\...

The angle between the two vectors A=3i^+4j^+5k^\overrightarrow{A} = 3\widehat{i} + 4\widehat{j} + 5\widehat{k} and B=3i^+4j^5k^\overrightarrow{B} = 3\widehat{i} + 4\widehat{j} - 5\widehat{k} will be

A

90°

B

C

60°

D

45°

Answer

90°

Explanation

Solution

cosθ=A.BAB=(3i^+4j^+5k^)(3i^+4j^5k^)9+16+259+16+25\cos\theta = \frac{\overset{\rightarrow}{A}.\overset{\rightarrow}{B}}{|A||B|} = \frac{(3\widehat{i} + 4\widehat{j} + 5\widehat{k})(3\widehat{i} + 4\widehat{j} - 5\widehat{k})}{\sqrt{9 + 16 + 25}\sqrt{9 + 16 + 25}}

=9+162550=0= \frac{9 + 16 - 25}{50} = 0

cosθ=0\cos\theta = 0, \therefore θ=90\theta = 90{^\circ}