Solveeit Logo

Question

Question: The angle between the two tangents from the origin to the circle \(( x - 7 ) ^ { 2 } + ( y + 1 ) ^ {...

The angle between the two tangents from the origin to the circle (x7)2+(y+1)2=25( x - 7 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 25 is.

A

0

B

π3\frac { \pi } { 3 }

C

π6\frac { \pi } { 6 }

D

π2\frac { \pi } { 2 }

Answer

π2\frac { \pi } { 2 }

Explanation

Solution

Any line through (0, 0) be ymx=0y - m x = 0 and it is a tangent to circle (x7)2+(y+1)2=25( x - 7 ) ^ { 2 } + ( y + 1 ) ^ { 2 } = 25, if

17m1+m2=5m=34,43\frac { - 1 - 7 m } { \sqrt { 1 + m ^ { 2 } } } = 5 \Rightarrow m = \frac { 3 } { 4 } , - \frac { 4 } { 3 }.

Therefore, the product of both the slopes is –1.

i.e., 34×43=1\frac { 3 } { 4 } \times - \frac { 4 } { 3 } = - 1.

Hence the angle between the two tangents is π2\frac { \pi } { 2 }.