Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The angle between the two lines 2x1=y2=z+31\frac{2-x}{1}=\frac{y}{2}=\frac{z+3}{1} and x44=y11=z52\frac{x-4}{4}=\frac{y-1}{1}=\frac{z-5}{2} is

A

0o{{0}^{o}}

B

90o{{90}^{o}}

C

45o{{45}^{o}}

D

None of these

Answer

90o{{90}^{o}}

Explanation

Solution

Given lines can be rewritten as
x21=y2=z+31\frac{x-2}{-1}=\frac{y}{2}=\frac{z+3}{1}
and x44=y11=z52\frac{x-4}{4}=\frac{y-1}{1}=\frac{z-5}{2}
Here, (a1,b1,c1)=(1,2,1)({{a}_{1}},{{b}_{1}},{{c}_{1}})=(1,2,1)
and (a2,b2,c2)=(4,1,2)({{a}_{2}},{{b}_{2}},{{c}_{2}})=(4,1,2)
\therefore cosθ=a1a2+b2b2+c1c2a12+b12+c12a22+b22+c22\cos \theta =\frac{{{a}_{1}}{{a}_{2}}+{{b}_{2}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
=1×4+2×1+1×2(1)2+22+1242+12+22=\frac{-1\times 4+2\times 1+1\times 2}{\sqrt{{{(-1)}^{2}}+{{2}^{2}}+{{1}^{2}}}\sqrt{{{4}^{2}}+{{1}^{2}}+{{2}^{2}}}}
=4+2+2621=0=\frac{-4+2+2}{\sqrt{6}\,\sqrt{21}}=0
\Rightarrow θ=90o\theta ={{90}^{o}}