Solveeit Logo

Question

Question: The angle between the tangents from (–2, –1) to the hyperbola 2x² – 3y² = 6 is-...

The angle between the tangents from (–2, –1) to the hyperbola 2x² – 3y² = 6 is-

A

tan­–1(2)

B

π3\frac{\pi}{3}

C

tan–1(12)\left( \frac{1}{2} \right)

D

π6\frac{\pi}{6}

Answer

tan–1(12)\left( \frac{1}{2} \right)

Explanation

Solution

x23y22\frac{x^{2}}{3}–\frac{y^{2}}{2} = 1; y + 1 = m (x + 2) or y = mx + (2m – 1) touches the hyperbola

if “c2 = a2m2 – b2” if (2m – 1)2 = 3m2 – 2

(i.e.) if m2 – 4m + 3 = 0 giving m = 1 and 3.

tan q = 311+3×1\left| \frac{3–1}{1 + 3 \times 1} \right| = 12\frac{1}{2}

Ž q = tan–1(12)\left( \frac{1}{2} \right)