Solveeit Logo

Question

Question: The angle between the tangents drawn to \({{(y-2)}^{2}}=4(x+3)\) at the point where it is intersecte...

The angle between the tangents drawn to (y2)2=4(x+3){{(y-2)}^{2}}=4(x+3) at the point where it is intersected by the line 3xy+8=03x-y+8=0 is 4πp\dfrac{4\pi }{p} , then pp has the value equal to
(a) 13
(b) 8
(c) 10510\sqrt{5}
(d) 4

Explanation

Solution

Find the intersection point of parabola (y2)2=4(x+3){{(y-2)}^{2}}=4(x+3) and line 3xy+8=03x-y+8=0 . Find the derivative of (y2)2=4(x+3){{(y-2)}^{2}}=4(x+3) with respect to x which will be the slope of line of tangent using the point of intersection. Use the formula for angles between two slopes m1{{m}_{1}} and m2{{m}_{2}} is given by tanθ=m2m11+m1m2\tan \theta =\left| \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right| to find the value of angle θ\theta .

Complete step by step answer:
In the question it is given that (y2)2=4(x+3).........(1){{(y-2)}^{2}}=4(x+3).........(1) is an equation of parabola and 3xy+8=03x-y+8=0 is an equation of straight line.

We have to find the angles between the tangents drawn to (y2)2=4(x+3){{(y-2)}^{2}}=4(x+3) at the point where it is intersected by the line 3xy+8=03x-y+8=0. So first we will find the point of intersection between these two curves. 3xy+8=03x-y+8=0 can be written as y=3x+8y=3x+8 . We will now substitute the value of yy in equation (1) we get,
(3x+82)2=4(x+3){{(3x+8-2)}^{2}}=4(x+3)
(3x+6)2=4(x+3){{(3x+6)}^{2}}=4(x+3)
Now we simplify the equation by squaring the terms on the left side of the equation and on the right hand side multiply 4 to the bracket.
9x2+36+36x=4x+129{{x}^{2}}+36+36x=4x+12
Combine the like terms and then simplify it.
9x2+(3612)+(36x4x)=09{{x}^{2}}+(36-12)+(36x-4x)=0
9x2+32x+24=0........(2)9{{x}^{2}}+32x+24=0........(2)
We will find the roots of the above equation by using the formula x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} where ax2+bx+c=0a{{x}^{2}}+bx+c=0 is the given quadratic equation. Here a=9, b=32 and c=24 so the roots of equation (2) is
x=32±3224(9)(24)2(9)x=\dfrac{-32\pm \sqrt{{{32}^{2}}-4(9)(24)}}{2(9)}
x=32±102486418x=\dfrac{-32\pm \sqrt{1024-864}}{18}
The value of 1024864\sqrt{1024-864} is 160\sqrt{160} . And the value of 160\sqrt{160} is 4104\sqrt{10} .
x=32±16018x=\dfrac{-32\pm \sqrt{160}}{18}
x=32±41018x=\dfrac{-32\pm 4\sqrt{10}}{18}
Multiplying numerator and denominator by 2 the above equation becomes
x=16±2109x=\dfrac{-16\pm 2\sqrt{10}}{9}
The two roots of equation (2) is x1=16+2109{{x}_{1}}=\dfrac{-16+2\sqrt{10}}{9} and x2=162109{{x}_{2}}=\dfrac{-16-2\sqrt{10}}{9} . For finding the value of y we will substitute the value of x1{{x}_{1}} and x2{{x}_{2}} in y=3x+8y=3x+8 we will get two values of y that is y1=8+2103{{y}_{1}}=\dfrac{8+2\sqrt{10}}{3} and y2=82103{{y}_{2}}=\dfrac{8-2\sqrt{10}}{3} . Now we will differentiate the equation of parabola (y2)2=4(x+3){{(y-2)}^{2}}=4(x+3) with respect to xx .
After differentiating we get,
2(y2)dydx=42(y-2)\dfrac{dy}{dx}=4
dydx=2(y2).......(3)\dfrac{dy}{dx}=\dfrac{2}{(y-2)}.......(3)
The above derivative represents the slope. Substituting y=y1y={{y}_{1}} and y=y2y={{y}_{2}} we get two slopes m1=2(y12){{m}_{1}}=\dfrac{2}{({{y}_{1}}-2)} and m2=2(y22){{m}_{2}}=\dfrac{2}{({{y}_{2}}-2)} . We know that angle between two lines having slope m1{{m}_{1}} and m2{{m}_{2}} is given by tanθ=m2m11+m1m2\tan \theta =\left| \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right| . Substitute the values of m1{{m}_{1}} and m2{{m}_{2}} to find the angle between slopes. We get
tanθ=(2y22)(2y12)1+[2y22][2y12]\tan \theta =\left| \dfrac{\left( \dfrac{2}{{{y}_{2}}-2} \right)-\left( \dfrac{2}{{{y}_{1}}-2} \right)}{1+\left[ \dfrac{2}{{{y}_{2}}-2} \right]\left[ \dfrac{2}{{{y}_{1}}-2} \right]} \right|
Solve the above equation by first simplifying the numerator and then the denominator, After simplifying we get.
tanθ=2(y12)2(y22)(y22)(y12)+4\tan \theta =\left| \dfrac{2({{y}_{1}}-2)-2({{y}_{2}}-2)}{({{y}_{2}}-2)({{y}_{1}}-2)+4} \right|
tanθ=2y142y2+4)y1y22y22y1+4+4\tan \theta =\left| \dfrac{2{{y}_{1}}-4-2{{y}_{2}}+4)}{{{y}_{1}}{{y}_{2}}-2{{y}_{2}}-2{{y}_{1}}+4+4} \right|
In the numerator adding -4 and 4 becomes 0 and in denominator adding 4 and 4 we get 8 so the above equation becomes,
tanθ=2y12y2)y1y22y22y1+8\tan \theta =\left| \dfrac{2{{y}_{1}}-2{{y}_{2}})}{{{y}_{1}}{{y}_{2}}-2{{y}_{2}}-2{{y}_{1}}+8} \right|
Now substitute the values of y1{{y}_{1}} and y2{{y}_{2}} which we have found earlier in the above equation.
tanθ=2(8+2103)2(82103)(82103)(8+2103)2(82103)2(8+2103)+8\tan \theta =\left| \dfrac{2\left( \dfrac{8+2\sqrt{10}}{3} \right)-2\left( \dfrac{8-2\sqrt{10}}{3} \right)}{\left( \dfrac{8-2\sqrt{10}}{3} \right)\left( \dfrac{8+2\sqrt{10}}{3} \right)-2\left( \dfrac{8-2\sqrt{10}}{3} \right)-2\left( \dfrac{8+2\sqrt{10}}{3} \right)+8} \right|
Solving the numerator and denominator part we get,
tanθ=(16+41016+4103)(249)(16410+16+4103)+8\tan \theta =\left| \dfrac{\left( \dfrac{16+4\sqrt{10}-16+4\sqrt{10}}{3} \right)}{\left( \dfrac{24}{9} \right)-\left( \dfrac{16-4\sqrt{10}+16+4\sqrt{10}}{3} \right)+8} \right|
Solving (16+41016+4103)\left( \dfrac{16+4\sqrt{10}-16+4\sqrt{10}}{3} \right) we get (8103)\left( \dfrac{8\sqrt{10}}{3} \right) and solving (16410+16+4103)\left( \dfrac{16-4\sqrt{10}+16+4\sqrt{10}}{3} \right) we get (323)\left( \dfrac{32}{3} \right) . The above equation now becomes,
tanθ=(8103)(83)(323)+8\tan \theta =\left| \dfrac{\left( \dfrac{8\sqrt{10}}{3} \right)}{\left( \dfrac{8}{3} \right)-\left( \dfrac{32}{3} \right)+8} \right|
tanθ=(8103)(832+243)\tan \theta =\left| \dfrac{\left( \dfrac{8\sqrt{10}}{3} \right)}{\left( \dfrac{8-32+24}{3} \right)} \right|
After adding 8-32+24 we get 0 as answer so the denominator becomes 0 then the value of tanθ\tan \theta becomes
tanθ=(8103)(0)\tan \theta =\left| \dfrac{\left( \dfrac{8\sqrt{10}}{3} \right)}{(0)} \right|
tanθ=\tan \theta =\infty
Since tanθ=\tan \theta =\infty the value of θ\theta is π2\dfrac{\pi }{2} . And in the question it is given that the angle is equal to 4πp\dfrac{4\pi }{p} , we have to find the value of pp so we will equate both the values of angle to find the value of pp ,
4πp=π2\dfrac{4\pi }{p}=\dfrac{\pi }{2}
p=8p=8
Hence the value of p=8p=8 .

Note:
Angle between two lines having slope m1{{m}_{1}} and m2{{m}_{2}} is given by tanθ=m2m11+m1m2\tan \theta =\left| \dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}} \right| . Substitute the values of m1{{m}_{1}} and m2{{m}_{2}} to find the angle between slopes. Where m1=2(y12){{m}_{1}}=\dfrac{2}{({{y}_{1}}-2)} and m2=2(y22){{m}_{2}}=\dfrac{2}{({{y}_{2}}-2)} . Then tanθ=(2y22)(2y12)1+[2y22][2y12]\tan \theta =\left| \dfrac{\left( \dfrac{2}{{{y}_{2}}-2} \right)-\left( \dfrac{2}{{{y}_{1}}-2} \right)}{1+\left[ \dfrac{2}{{{y}_{2}}-2} \right]\left[ \dfrac{2}{{{y}_{1}}-2} \right]} \right| . Care should be taken while calculating this expression, plus and minus sign should not be interchanged.