Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The angle between the straight lines x1=2y+33=z+52x-1=\frac{2y+3}{3}=\frac{z+5}{2} and x3r+2;y=2r1;z=2,x-3r+2; y=-2r-1; z=2, where rr is a parameter, is

A

π4\frac{\pi}{4}

B

cos1(3182)\cos ^{-1}\left(\frac{-3}{\sqrt{182}}\right)

C

sin1(3182)\sin ^{-1}\left(\frac{-3}{\sqrt{182}}\right)

D

π2\frac{\pi}{2}

Answer

π2\frac{\pi}{2}

Explanation

Solution

Given equation of lines are,
x1=2y+33=z+52x-1=\frac{2 y+3}{3}=\frac{z+5}{2}
and x=3r+2;y=2r1;z=2 x=3 r+2 ; y=-2 r-1 ; z=2
x11=y+3232=z+52\Rightarrow \frac{x-1}{1}=\frac{y+\frac{3}{2}}{\frac{3}{2}}=\frac{z+5}{2}
and x23=r;y+12=r;z20=r\frac{x-2}{3}=r ; \frac{y+1}{-2}=r ; \frac{z-2}{0}=r
x11=y+3232=z+52\Rightarrow \frac{x-1}{1}=\frac{y+\frac{3}{2}}{\frac{3}{2}}=\frac{z+5}{2}
and x23=y+12=z20\frac{x-2}{3}=\frac{y+1}{-2}=\frac{z-2}{0}
DR's of lines Ist and IInd lines are (1,32,2)\left(1, \frac{3}{2}, 2\right) and (3,2,0)(3,-2,0)
\therefore The angle between two straight lines is
cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos \,\theta =\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
=1×332×2+2×012+(32)2+2232+22+02=\frac{1 \times 3-\frac{3}{2} \times 2+2 \times 0}{\sqrt{1^{2}+\left(\frac{3}{2}\right)^{2}+2^{2}} \sqrt{3^{2}+2^{2}+0^{2}}}
=33+01+94+49+4=\frac{3-3+0}{\sqrt{1+\frac{9}{4}+4} \sqrt{9+4}}
=029413=\frac{0}{\sqrt{\frac{29}{4}} \sqrt{13}}
cosθ=0\Rightarrow \cos \theta=0
θ=π2\Rightarrow \theta=\frac{\pi}{2}