Solveeit Logo

Question

Question: The angle between the straight line \(r = \left( {\hat i + 2\hat j + \hat k} \right) + \left( {\hat ...

The angle between the straight line r=(i^+2j^+k^)+(i^j^+k^)r = \left( {\hat i + 2\hat j + \hat k} \right) + \left( {\hat i - \hat j + \hat k} \right) and the plane r(2i^j^+k^)=4r \cdot \left( {2\hat i - \hat j + \hat k} \right) = 4 is

A. sin1(223) B. sin1(26) C. sin1(23) D. sin1(23) E. sin1(23)  A.{\text{ }}{\sin ^{ - 1}}\left( {\dfrac{{2\sqrt 2 }}{3}} \right) \\\ B.{\text{ }}{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{6}} \right) \\\ C.{\text{ }}{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right) \\\ D.{\text{ }}{\sin ^{ - 1}}\left( {\dfrac{2}{{\sqrt 3 }}} \right) \\\ E.{\text{ }}{\sin ^{ - 1}}\left( {\dfrac{2}{3}} \right) \\\
Explanation

Solution

Hint- In order to solve the problem use the relation giving the angle between the given line and a plane. If θ\theta is the angle between line r=a+λ(b)\vec r = \vec a + \lambda \left( {\vec b} \right) and a plane rn=d\vec r \cdot \vec n = d , in this condition sinθ\sin \theta will be given as sinθ=bnbn\sin \theta = \left| {\dfrac{{\vec b \cdot \vec n}}{{\left| {\vec b} \right|\left| {\vec n} \right|}}} \right|

Complete step-by-step answer:

Given line vector r=(i^+2j^+k^)+(i^j^+k^)r = \left( {\hat i + 2\hat j + \hat k} \right) + \left( {\hat i - \hat j + \hat k} \right)
And the plane vector r(2i^j^+k^)=4r \cdot \left( {2\hat i - \hat j + \hat k} \right) = 4
As we know that If θ\theta is the angle between line r=a+λ(b)\vec r = \vec a + \lambda \left( {\vec b} \right) and a plane rn=d\vec r \cdot \vec n = d , in this condition sinθ\sin \theta will be given as sinθ=bnbn or θ=sin1bnbn\sin \theta = \left| {\dfrac{{\vec b \cdot \vec n}}{{\left| {\vec b} \right|\left| {\vec n} \right|}}} \right|{\text{ or }}\theta = {\sin ^{ - 1}}\left| {\dfrac{{\vec b \cdot \vec n}}{{\left| {\vec b} \right|\left| {\vec n} \right|}}} \right|
In order to use above property to find θ\theta we will separately evaluate bn and bn\vec b \cdot \vec n{\text{ and }}\left| {\vec b} \right|\left| {\vec n} \right|
Line vector is r=(i^+2j^+k^)+(i^j^+k^)r = \left( {\hat i + 2\hat j + \hat k} \right) + \left( {\hat i - \hat j + \hat k} \right)
Comparing it with general line vector r=a+λ(b)\vec r = \vec a + \lambda \left( {\vec b} \right)
a=(i^+2j^+k^) and b=(i^j^+k^)\vec a = \left( {\hat i + 2\hat j + \hat k} \right){\text{ and }}\vec b = \left( {\hat i - \hat j + \hat k} \right)
Next plane vector is r(2i^j^+k^)=4r \cdot \left( {2\hat i - \hat j + \hat k} \right) = 4
Comparing it with general plane equation rn=d\vec r \cdot \vec n = d
n=(2i^j^+k^) and d=4\vec n = \left( {2\hat i - \hat j + \hat k} \right){\text{ and }}d = 4
As we know that general dot product for two general vectors is carried out in following way
(ai^+bj^+ck^)(pi^+qj^+rk^)=ap+bq+cr\left( {a\hat i + b\hat j + c\hat k} \right) \cdot \left( {p\hat i + q\hat j + r\hat k} \right) = ap + bq + cr
Similarly finding bn\vec b \cdot \vec n

bn=(i^j^+k^)(2i^j^+k^) bn=1×2+(1)×(1)+1×1 bn=2+1+1 bn=4  \Rightarrow \vec b \cdot \vec n = \left( {\hat i - \hat j + \hat k} \right) \cdot \left( {2\hat i - \hat j + \hat k} \right) \\\ \Rightarrow \vec b \cdot \vec n = 1 \times 2 + \left( { - 1} \right) \times \left( { - 1} \right) + 1 \times 1 \\\ \Rightarrow \vec b \cdot \vec n = 2 + 1 + 1 \\\ \Rightarrow \vec b \cdot \vec n = 4 \\\

Similarly we know mod of general vector is done in the following ways
if a=(xi^+yj^+zk^) then a=x2+y2+z2{\text{if }}\vec a = \left( {x\hat i + y\hat j + z\hat k} \right){\text{ then }}\left| {\vec a} \right| = \sqrt {{x^2} + {y^2} + {z^2}}
So for bn\left| {\vec b} \right|\left| {\vec n} \right| , we proceed in the similar way
bn=b×n bn=(i^j^+k^)×(2i^j^+k^) bn=(1)2+(1)2+(1)2×(2)2+(1)2+(1)2 bn=1+1+1×4+1+1 bn=3×6=18  \Rightarrow \left| {\vec b} \right|\left| {\vec n} \right| = \left| {\vec b} \right| \times \left| {\vec n} \right| \\\ \Rightarrow \left| {\vec b} \right|\left| {\vec n} \right| = \left| {\left( {\hat i - \hat j + \hat k} \right)} \right| \times \left| {\left( {2\hat i - \hat j + \hat k} \right)} \right| \\\ \Rightarrow \left| {\vec b} \right|\left| {\vec n} \right| = \sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} \times \sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( 1 \right)}^2}} \\\ \Rightarrow \left| {\vec b} \right|\left| {\vec n} \right| = \sqrt {1 + 1 + 1} \times \sqrt {4 + 1 + 1} \\\ \Rightarrow \left| {\vec b} \right|\left| {\vec n} \right| = \sqrt 3 \times \sqrt 6 = \sqrt {18} \\\
As we know the formula for angle between them the line vector and the plane vector is
θ=sin1bnbn\theta = {\sin ^{ - 1}}\left| {\dfrac{{\vec b \cdot \vec n}}{{\left| {\vec b} \right|\left| {\vec n} \right|}}} \right|
So, now let us substitute the values in to the formula
θ=sin1bnbn θ=sin1418 θ=sin1432=sin1223  \theta = {\sin ^{ - 1}}\left| {\dfrac{{\vec b \cdot \vec n}}{{\left| {\vec b} \right|\left| {\vec n} \right|}}} \right| \\\ \Rightarrow \theta = {\sin ^{ - 1}}\left| {\dfrac{4}{{\sqrt {18} }}} \right| \\\ \Rightarrow \theta = {\sin ^{ - 1}}\left| {\dfrac{4}{{3\sqrt 2 }}} \right| = {\sin ^{ - 1}}\left| {\dfrac{{2\sqrt 2 }}{3}} \right| \\\
Hence, the angle between the line vector and the plane is sin1(223){\sin ^{ - 1}}\left( {\dfrac{{2\sqrt 2 }}{3}} \right)
So, option A is the correct option.

Note- In order to solve such problems related to finding the angle between two figures whose coordinates are given in vector form, remembering the formula for the angle is very important. The problem can also be solved by basic steps of vectors and without the formula but that will be very lengthy. Students must remember the formula for dot product of vectors.