Solveeit Logo

Question

Question: The angle between the rectangular hyperbolas (y – mx) (my + x) = a<sup>2</sup> and (m<sup>2</sup> – ...

The angle between the rectangular hyperbolas (y – mx) (my + x) = a2 and (m2 – 1) (y2 – x2) + 4mxy = b2 is-

A

π2\frac{\pi}{2}

B

π3\frac{\pi}{3}

C

π4\frac{\pi}{4}

D

π6\frac{\pi}{6}

Answer

π2\frac{\pi}{2}

Explanation

Solution

For first hyperbola

(y – mx) (mdydx+1)\left( m\frac{dy}{dx} + 1 \right) + (my + x) (dydxm)\left( \frac{dy}{dx}–m \right) = 0

dydx\frac{dy}{dx} (my + x + my – m2x) + y – mx – m2y – mx = 0

Ž dydx\frac{dy}{dx} = y+m2y+2mx2my+xm2x\frac{- y + m^{2}y + 2mx}{2my + x - m^{2}x} = m1

For second hyperbola

(m2 – 1) (2ydydx2x)\left( 2y\frac{dy}{dx} - 2x \right) + 4m (xdydx+y)\left( x\frac{dy}{dx} + y \right) = 0

dydx\frac{dy}{dx} (2y (m2 – 1) + 4 mx) = – 4my + 2x (m2 – 1)

Ž dydx\frac{dy}{dx}=2my+m2xxm2yy+2mx\frac{- 2my + m^{2}x - x}{m^{2}y - y + 2mx} = m2 .

Q m1m2 = –1 Ž Angle between the hyperbolas = π2\frac{\pi}{2}.

Hence (1) is correct answer.