Solveeit Logo

Question

Mathematics Question on Angle between Two Planes

The angle between the planes 3x+4y+5z=33x + 4y + 5z = 3 and 4x3y+5z=94 x-3 y + 5z = 9 is equal to

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

π6\frac{\pi}{6}

D

π3\frac{\pi}{3}

Answer

π3\frac{\pi}{3}

Explanation

Solution

Given planes are 3x+4y+5z=33 x+4 y+5 z=3 and
4x3y+5z=94 x-3 y+5 z=9. Since, DR's of normal to the planes are
(a1,b1,c1)=(3,4,5)\left(a_{1}, b_{1}, c_{1}\right)=(3,4,5)
and (a2,b2,c2)=(4,3,5)\left(a_{2}, b_{2}, c_{2}\right)=(4,-3,5)
\therefore Angle between the planes == Angle between their normal
cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\therefore \cos \theta =\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
=3×4+4×(3)+5×532+42+5242+(3)2+52=\frac{3 \times 4+4 \times(-3)+5 \times 5}{\sqrt{3^{2}+4^{2}+5^{2}} \sqrt{4^{2}+(-3)^{2}+5^{2}}}
=1212+259+16+2516+9+25=2550=\frac{12-12+25}{\sqrt{9+16+25} \sqrt{16+9+25}}=\frac{25}{50}
cosθ=12θ=π3\Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}