Solveeit Logo

Question

Question: The angle between the pair of tangents drawn from the point (1, 2) to the ellipse \(3x^{2} + 2y^{2} ...

The angle between the pair of tangents drawn from the point (1, 2) to the ellipse 3x2+2y2=53x^{2} + 2y^{2} = 5is

A

tan1(12/5)\tan^{- 1}(12/5)

B

tan1(6/5)\tan^{- 1}(6/\sqrt{5})

C

tan1(12/5)\tan^{- 1}(12/\sqrt{5})

D

tan1(6/5)\tan^{- 1}(6/5)

Answer

tan1(12/5)\tan^{- 1}(12/\sqrt{5})

Explanation

Solution

The combined equation of the pair of tangents drawn from (1,2) to the ellipse 3x2+2y2=53x^{2} + 2y^{2} = 5 is

(3x2+2y25)(3+85)=(3x+4y5)2(3x^{2} + 2y^{2} - 5)(3 + 8 - 5) = (3x + 4y - 5)^{2} [using SS1=T2\mathbf{S}\mathbf{S}_{\mathbf{1}}\mathbf{=}\mathbf{T}^{\mathbf{2}}]

9x224xy4y2+.......=09x^{2} - 24xy - 4y^{2} + ....... = 0The angle between the lines given by this equation is tanθ=2h2aba+b\tan\theta = \frac{2\sqrt{h^{2} - ab}}{a + b}

Where a=9a = 9, h=12,b=4h = - 12,b = - 4tanθ=12/5\tan\theta = 12/\sqrt{5}

θ=tan1(12/5)\theta = \tan^{- 1}(12/\sqrt{5})