Solveeit Logo

Question

Mathematics Question on angle between two lines

The angle between the pair of tangents drawn from the point (1, 2) to the ellipse 3x2+2y2=53x^2 + 2y^2 = 5 is

A

tan1(125)\tan^{-1}\left(\frac{12}{5}\right)

B

tan1(65)tan^{-1}\left(\frac{6}{\sqrt{5}}\right)

C

tan1(125)tan^{-1}\left(\frac{12}{\sqrt{5}}\right)

D

tan1(125)tan^{-1}\left({12}{\sqrt{5}}\right)

Answer

tan1(125)tan^{-1}\left(\frac{12}{\sqrt{5}}\right)

Explanation

Solution

Combined equation of pair of tangents from (1,2)\left(1,2\right) to the ellipse 3x2+2y2=53x^{2}+2y^{2}=5 is (3x2+2y25)(3+85)=(3x+2y25)2\left(3x^{2}+2y^{2}-5\right)\left(3+8-5\right) = \left(3x+2y\cdot2 -5\right)^{2} (SS1=T2)\quad\left(SS_{1} =T^{2}\right) i.e., 6(3x2+2y25)=(3x+4y5)26\left(3x^{2}+2y^{2}-5\right)= \left(3x+4y-5\right)^{2} i.e., 18x2+12y230=9x2+16y2+25+24xy30x40y18x^{2}+12y^{2}-30 = 9x^{2}+16y^{2}+25+24xy-30x-40y i.e., 9x24y224xy+30x+40y55=09x^{2}-4y^{2} -24xy+30x+40y-55=0 9x224xy4y2+30x+40y55=0\Rightarrow 9x^{2}-24xy -4y^{2}+30x+40y-55 = 0 If θ\theta is the angle between the pair of tangents, then tanθ=2h2aba+btan\,\theta =\frac{ 2\sqrt{h^{2}-ab}}{a+b} Here a=9,b=4;2h=24a=9, b=-4 ; 2h= -24 i.e., h=12h=-12 tanθ=2144+3694=21805\therefore tan\, \theta =\frac{ 2\sqrt{144+36}}{9-4} = \frac{2\sqrt{180}}{5} =2(6)55=125= \frac{2\left(6\right)\sqrt{5}}{5} = \frac{12}{\sqrt{5}} θ=tan1125 \therefore \theta = tan^{-1} \frac{12}{\sqrt{5}}