Solveeit Logo

Question

Question: The angle between the pair of straight lines $x^2 + 4y^2 - 7xy = 0$, is...

The angle between the pair of straight lines x2+4y27xy=0x^2 + 4y^2 - 7xy = 0, is

A

tan1(13)tan^{-1}(\frac{1}{3})

B

tan13tan^{-1}3

C

tan1335tan^{-1}\frac{\sqrt{33}}{5}

D

tan1533tan^{-1}\frac{5}{\sqrt{33}}

Answer

tan1335tan^{-1}\frac{\sqrt{33}}{5}

Explanation

Solution

The given equation of the pair of straight lines is x27xy+4y2=0x^2 - 7xy + 4y^2 = 0. This equation is in the form ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0. Comparing the coefficients, we have:

a=1a = 1

2h=7    h=722h = -7 \implies h = -\frac{7}{2}

b=4b = 4

The angle θ\theta between the pair of straight lines represented by ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0 is given by the formula:

tanθ=2h2aba+b\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|

First, calculate h2abh^2 - ab:

h2=(72)2=494h^2 = \left(-\frac{7}{2}\right)^2 = \frac{49}{4}

ab=(1)(4)=4ab = (1)(4) = 4

h2ab=4944=49164=334h^2 - ab = \frac{49}{4} - 4 = \frac{49 - 16}{4} = \frac{33}{4}

Next, calculate a+ba + b:

a+b=1+4=5a + b = 1 + 4 = 5

Substitute these values into the formula for tanθ\tan \theta:

tanθ=23345\tan \theta = \left| \frac{2\sqrt{\frac{33}{4}}}{5} \right|

tanθ=23345\tan \theta = \left| \frac{2 \cdot \frac{\sqrt{33}}{\sqrt{4}}}{5} \right|

tanθ=23325\tan \theta = \left| \frac{2 \cdot \frac{\sqrt{33}}{2}}{5} \right|

tanθ=335\tan \theta = \left| \frac{\sqrt{33}}{5} \right|

Since 33\sqrt{33} and 5 are positive, the absolute value is 335\frac{\sqrt{33}}{5}.

tanθ=335\tan \theta = \frac{\sqrt{33}}{5}

Therefore, the angle θ\theta is tan1(335)\tan^{-1}\left(\frac{\sqrt{33}}{5}\right).