Solveeit Logo

Question

Question: The angle between the pair of straight lines represented by \(2x^{2} - 7xy + 3y^{2} = 0\)is...

The angle between the pair of straight lines represented by 2x27xy+3y2=02x^{2} - 7xy + 3y^{2} = 0is

A

60o60^{o}

B

45o45^{o}

C

tan1(7/6)\tan^{- 1}(7/6)

D

30o30^{o}

Answer

45o45^{o}

Explanation

Solution

Angle between the lines is ,

θ=tan12h2aba+b=tan12(72)2(2)(3)2+3\theta = \tan^{- 1}\left| \frac{2\sqrt{h^{2} - ab}}{a + b} \right| = \tan^{- 1}\left| \frac{2\sqrt{\left( - \frac{7}{2} \right)^{2} - (2)(3)}}{2 + 3} \right|

θ=tan1(25.52)=tan1(1)\theta = \tan^{- 1}\left( \frac{2}{5}.\frac{5}{2} \right) = \tan^{- 1}(1)θ=45o\theta = 45^{o}