Question
Mathematics Question on angle between two lines
The angle between the pair of lines (x2+y2)sin2α=(xcosθ−ysinθ)2 is :
A
θ
B
2θ
C
α
D
2α
Answer
2α
Explanation
Solution
Given pair of lines of (x2+y2)sin2α=(xcosθ−ysinθ)2
⇒ x2sin2α+y2sin2α=x2cos2θ
+y2sin2θ−2xysinθcosθ
⇒ x2(sin2α−cos2θ)+y2(sin2α−sin2θ)
+2xysinθcosθ=0
⇒ x2(sin2α−cos2θ)+y2(sin2α−sin2θ)
+2(sinθcosθ)xy=0
On comparing with ax2+by2+2hxy=0,
We get, a=sin2α−cos2θ,b=sin2α−sin2θ
and h=sinθcosθ
Let θ be the angle between the pair of lines. ∴
tanθ=a+b2h2−ab
=sin2α−cos2θ+sin2α−sin2θ)2 sin2θcos2θ−(sin2α−cos2θ)×(sin2α−sin2θ)
=−(−1−2sin2α)2 sin2θcos2θ−(sin2α)2+sin2αsin2θ+sin2αcos2θ−sin2θcos2θ
=−cos2α2sin2α(sin2θ+cos2θ)−(sin2α)2
=−cos2α2sin2α(1−sin2α)
⇒ tanθ=cos2αsin2α=tan2α
⇒ θ=2α