Solveeit Logo

Question

Mathematics Question on angle between two lines

The angle between the pair of lines (x2+y2)sin2α=(xcosθysinθ)2({{x}^{2}}+{{y}^{2}}){{\sin }^{2}}\alpha ={{(x\,\cos \theta -y\,\sin \theta )}^{2}} is :

A

θ\theta

B

2θ2\,\theta

C

α\alpha

D

2α2\,\alpha

Answer

2α2\,\alpha

Explanation

Solution

Given pair of lines of (x2+y2)sin2α=(xcosθysinθ)2({{x}^{2}}+{{y}^{2}})si{{n}^{2}}\alpha ={{(x\,\cos \,\theta -y\,\sin \theta )}^{2}}
\Rightarrow x2sin2α+y2sin2α=x2cos2θ{{x}^{2}}\,{{\sin }^{2}}\alpha +{{y}^{2}}\,{{\sin }^{2}}\alpha ={{x}^{2}}{{\cos }^{2}}\theta
+y2sin2θ2xysinθcosθ+{{y}^{2}}\,{{\sin }^{2}}\theta -2xy\,\sin \theta \,\cos \theta
\Rightarrow x2(sin2αcos2θ)+y2(sin2αsin2θ){{x}^{2}}({{\sin }^{2}}\alpha -{{\cos }^{2}}\theta )+{{y}^{2}}({{\sin }^{2}}\alpha -{{\sin }^{2}}\theta )
+2xysinθcosθ=0+2xy\,\,\sin \theta \,\cos \theta =0
\Rightarrow x2(sin2αcos2θ)+y2(sin2αsin2θ){{x}^{2}}({{\sin }^{2}}\alpha -{{\cos }^{2}}\theta )+{{y}^{2}}({{\sin }^{2}}\alpha -{{\sin }^{2}}\theta )
+2(sinθcosθ)xy=0+2(\sin \theta \,\cos \theta )\,xy=0
On comparing with ax2+by2+2hxy=0,a{{x}^{2}}+b{{y}^{2}}+2hxy=0,
We get, a=sin2αcos2θ,b=sin2αsin2θa={{\sin }^{2}}\alpha -{{\cos }^{2}}\theta ,\,b={{\sin }^{2}}\alpha -{{\sin }^{2}}\theta
and h=sinθcosθh=\sin \,\theta \,\cos \theta
Let θ\theta be the angle between the pair of lines. \therefore
tanθ=2h2aba+b\tan \theta =\left| \frac{2\,\sqrt{{{h}^{2}}-ab}}{a+b} \right|
=2sin2θcos2θ(sin2αcos2θ) ×(sin2αsin2θ) sin2αcos2θ+sin2αsin2θ)=\left| \frac{2\sqrt{\begin{aligned} & {{\sin }^{2}}\,\theta \,{{\cos }^{2}}\theta -({{\sin }^{2}}\alpha -{{\cos }^{2}}\theta ) \\\ & \times ({{\sin }^{2}}\alpha -{{\sin }^{2}}\theta ) \\\ \end{aligned}}}{{{\sin }^{2}}\alpha -{{\cos }^{2}}\theta +{{\sin }^{2}}\alpha -{{\sin }^{2}}\theta )} \right|
=2sin2θcos2θ(sin2α)2+sin2α sin2θ+sin2αcos2θsin2θcos2θ (12sin2α)=\left| \frac{2\sqrt{\begin{aligned} & {{\sin }^{2}}\theta \,{{\cos }^{2}}\theta -{{({{\sin }^{2}}\alpha )}^{2}}+{{\sin }^{2}}\alpha \\\ & {{\sin }^{2}}\theta +{{\sin }^{2}}\alpha \,{{\cos }^{2}}\theta -{{\sin }^{2}}\theta \,{{\cos }^{2}}\theta \\\ \end{aligned}}}{-(-1-2{{\sin }^{2}}\alpha )} \right|
=2sin2α(sin2θ+cos2θ)(sin2α)2cos2α=\left| \frac{2\sqrt{{{\sin }^{2}}\alpha ({{\sin }^{2}}\theta +{{\cos }^{2}}\theta )-{{(si{{n}^{2}}\alpha )}^{2}}}}{-\cos \,2\,\,\alpha } \right|
=2sin2α(1sin2α)cos2α=\left| \frac{2\sqrt{{{\sin }^{2}}\alpha (1-{{\sin }^{2}}\alpha )}}{-\cos \,2\alpha } \right|
\Rightarrow tanθ=sin2αcos2α=tan2α\tan \theta =\left| \frac{\sin \,2\alpha }{\cos \,2\alpha } \right|=\tan \,2\alpha
\Rightarrow θ=2α\theta =2\alpha