Solveeit Logo

Question

Mathematics Question on angle between two lines

The angle between the lines whose direction cosines satisfy the equations l+m+n=0l + m + n = 0 and l2=m2+n2l^2= m^2 + n^2is

A

π/6\pi/6

B

π/2\pi/2

C

π/3\pi/3

D

π/4\pi/4

Answer

π/3\pi/3

Explanation

Solution

l+m+n=0l+m+n=0 l2=m2+n2l^{2}=m^{2}+n^{2} Now, (mn)2=m2+n(-m-n)^{2}=m^{2}+n mn=0\Rightarrow m n=0 m=0m=0 or n=0n=0 If m=0m=0 then l=nl=-n l2+m2+n2=1l^{2}+m^{2}+n^{2}=1 Gives n=±12\Rightarrow n=\pm \frac{1}{\sqrt{2}} i.e. (l1,m1,n1)\left(l_{1}, m_{1}, n_{1}\right) =(12,0,12)=\left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) cosθ=12\therefore \cos \theta=\frac{1}{2} θ=π3\theta=\frac{\pi}{3} If n=0n=0 then l=ml=-m l2+m2+n2=1l^{2}+m^{2}+n^{2}=1 2m2=1\Rightarrow 2 m^{2}=1 m2=12\Rightarrow m^{2}=\frac{1}{2} m=±12\Rightarrow m=\pm \frac{1}{\sqrt{2}} Let m=12m=\frac{1}{\sqrt{2}} l=12l=-\frac{1}{\sqrt{2}} n=0n=0 (l2,m2,n2)\left(l_{2}, m_{2}, n_{2}\right) =(12,12,0)=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)