Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The angle between the lines whose direction cosines satisfy the equations l+m+n=0,l2+m2n2=0l+m+n=0, l^{2}+m^{2}-n^{2}=0 is

A

π6\frac{\pi}{6}

B

π4\frac{\pi}{4}

C

π3\frac{\pi}{3}

D

π2\frac{\pi}{2}

Answer

π3\frac{\pi}{3}

Explanation

Solution

Given, l+m+n=0l+m+n=0
l=mn\Rightarrow l=-m-n
and l2+m2n2=0l^{2}+m^{2} n^{2}=0
(mn)2+m2n2=0\therefore(-m-n)^{2}+m^{2}-n^{2}=0
2m2+2mn=0\Rightarrow 2 m^{2}+2 m n=0
2m(m+n)=0\Rightarrow 2 m(m+n)=0
m=0\Rightarrow m=0 or m+n=0m+n=0
If m=0m=0, thenl =n=-n
l11=m10=n1\therefore \frac{l_{1}}{-1}=\frac{m_{1}}{0}=\frac{n}{1}
and if m+n=0m+n=0
m=n\Rightarrow m=-n, then l=0l =0
l20=m11=n21\therefore \frac{l_{2}}{0}=\frac{m_{1}}{-1}=\frac{n_{2}}{1}
ie.,(l1,m1,n1)=(1,0,1)\left(l_{1}, m_{1}, n_{1}\right)=(-1,0,1)
and (l2,m2,n2)=(0,1,1)\left(l_{2}, m_{2}, n_{2}\right)=(0,-1,1)
cosθ=0+0+11+0+10+1+1=12\therefore \cos \theta=\frac{0+0+1}{\sqrt{1+0+1} \sqrt{0+1+1}}=\frac{1}{2}
θ=π\Rightarrow \theta=\pi