Solveeit Logo

Question

Question: The angle between the lines whose direction cosines are connected by the relations \(l + m + n = 0\)...

The angle between the lines whose direction cosines are connected by the relations l+m+n=0l + m + n = 0and 2lm+2nlmn=02 l m + 2 n l - m n = 0, is

A

π3\frac { \pi } { 3 }

B

2π3\frac { 2 \pi } { 3 }

C

π\pi

D

None of these

Answer

2π3\frac { 2 \pi } { 3 }

Explanation

Solution

Eliminating n, we have (2l+m)(lm)=0( 2 l + m ) ( l - m ) = 0

When 2l+m=02 l + m = 0 then l1=m2=n1\frac { l } { 1 } = \frac { m } { - 2 } = \frac { n } { 1 }

When lm=0l - m = 0 then l1=m1=n2\frac { l } { 1 } = \frac { m } { 1 } = \frac { n } { - 2 }

\therefore Direction ratios are 1, – 2, 1 and 1, 1, – 2.

cosθ=a1a2(a12)(a22)=12\cos \theta = \frac { \sum a _ { 1 } a _ { 2 } } { \sqrt { \left( \sum a _ { 1 } ^ { 2 } \right) } \cdot \sqrt { \left( \sum a _ { 2 } ^ { 2 } \right) } } = - \frac { 1 } { 2 }