Solveeit Logo

Question

Question: The angle between the lines whose direction cosines satisfy the equations \(l + m + n = 0\) , \(l ...

The angle between the lines whose direction cosines satisfy the equations l+m+n=0l + m + n = 0 , l2+m2n2=0l ^ { 2 } + m ^ { 2 } - n ^ { 2 } = 0 is given by

A

2π3\frac { 2 \pi } { 3 }

B

π6\frac { \pi } { 6 }

C

5π6\frac { 5 \pi } { 6 }

D

π3\frac { \pi } { 3 }

Answer

π3\frac { \pi } { 3 }

Explanation

Solution

l+m+n=0,l2+m2n2=0l + m + n = 0 , l ^ { 2 } + m ^ { 2 } - n ^ { 2 } = 0 and l2+m2+n2=1l ^ { 2 } + m ^ { 2 } + n ^ { 2 } = 1

Solving above equations, we get m=±12,n=±12m = \pm \frac { 1 } { \sqrt { 2 } } , n = \pm \frac { 1 } { \sqrt { 2 } }and l=0l = 0. θ=π3\therefore \theta = \frac { \pi } { 3 } or π2\frac { \pi } { 2 }.