Solveeit Logo

Question

Question: The angle between the lines whose direction cosines are proportional to (1, 2, 1) and (2, –3, 6) is...

The angle between the lines whose direction cosines are proportional to (1, 2, 1) and (2, –3, 6) is

A

cos1(276)\cos ^ { - 1 } \left( \frac { 2 } { 7 \sqrt { 6 } } \right)

B

cos1(176)\cos ^ { - 1 } \left( \frac { 1 } { 7 \sqrt { 6 } } \right)

C

cos1(376)\cos ^ { - 1 } \left( \frac { 3 } { 7 \sqrt { 6 } } \right)

D

cos1(576)\cos ^ { - 1 } \left( \frac { 5 } { 7 \sqrt { 6 } } \right)

Answer

cos1(276)\cos ^ { - 1 } \left( \frac { 2 } { 7 \sqrt { 6 } } \right)

Explanation

Solution

θ=cos1[(1)(2)+(2)(3)+(1)(6)12+22+1222+(3)2+62]\theta = \cos ^ { - 1 } \left[ \frac { ( 1 ) ( 2 ) + ( 2 ) ( - 3 ) + ( 1 ) ( 6 ) } { \sqrt { 1 ^ { 2 } + 2 ^ { 2 } + 1 ^ { 2 } } \sqrt { 2 ^ { 2 } + ( - 3 ) ^ { 2 } + 6 ^ { 2 } } } \right]

cos1[26+6649]=cos1[276]\cos ^ { - 1 } \left[ \frac { 2 - 6 + 6 } { \sqrt { 6 } \sqrt { 49 } } \right] = \cos ^ { - 1 } \left[ \frac { 2 } { 7 \sqrt { 6 } } \right] .