Solveeit Logo

Question

Mathematics Question on Straight lines

The angle between the lines sin2αy22xycos2α+(cos2α1)x2=0\sin^2 \alpha \cdot y^2 - 2xy \cdot \cos^2 \alpha + (\cos^2 \alpha - 1)x^2 = 0, is

A

9090^\circ

B

α\alpha

C

α2\frac {\alpha}{2}

D

2α2\alpha

Answer

9090^\circ

Explanation

Solution

Given pair of straight line is
(cos2α1)x22cos2αxy+sin2αy2=0\left(\cos ^{2} \alpha-1\right) x^{2}-2 \cos ^{2} \alpha \cdot x y+\sin ^{2} \alpha y^{2}=0
On comparing with the equation
ax2+2hxy+by2=0,a x^{2}+2 h \,x y+b y^{2}=0, we get
a=cos2α1=sin2αa=\cos ^{2} \alpha-1=-\sin ^{2} \alpha
n=cos2α and b=sin2αn=-\cos ^{2} \alpha \quad \text { and } \quad b=\sin ^{2} \alpha
Let θ\theta be the angle between the lines, then
tanθ=2n2aba+b\tan \theta=\left|\frac{2 \sqrt{n^{2}-a b}}{a+b}\right|
tanθ=2cos4α+sin4αsin2α+sin2α==tan90\Rightarrow \tan \theta=\left|\frac{2 \sqrt{\cos ^{4} \alpha+\sin ^{4} \alpha}}{-\sin ^{2} \alpha+\sin ^{2} \alpha}\right|=\infty=\tan 90^{\circ}
θ=90\Rightarrow \theta =90^{\circ}