Solveeit Logo

Question

Question: The angle between the lines \(\frac { x + 4 } { 1 } = \frac { y - 3 } { 2 } = \frac { z + 2 } { 3 }\...

The angle between the lines x+41=y32=z+23\frac { x + 4 } { 1 } = \frac { y - 3 } { 2 } = \frac { z + 2 } { 3 } and x3=y12=z1\frac { x } { 3 } = \frac { y - 1 } { - 2 } = \frac { z } { 1 } is

A

sin1(17)\sin ^ { - 1 } \left( \frac { 1 } { 7 } \right)

B

cos1(27)\cos ^ { - 1 } \left( \frac { 2 } { 7 } \right)

C

cos1(17)\cos ^ { - 1 } \left( \frac { 1 } { 7 } \right)

D

None of these

Answer

cos1(17)\cos ^ { - 1 } \left( \frac { 1 } { 7 } \right)

Explanation

Solution

Angle between two lines,

cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\cos \theta = \frac { a _ { 1 } a _ { 2 } + b _ { 1 } b _ { 2 } + c _ { 1 } c _ { 2 } } { \sqrt { a _ { 1 } ^ { 2 } + b _ { 1 } ^ { 2 } + c _ { 1 } ^ { 2 } } \sqrt { a _ { 2 } ^ { 2 } + b _ { 2 } ^ { 2 } + c _ { 2 } ^ { 2 } } }

cosθ=1×3+2×2+3×112+22+3232+(2)2+12\therefore \cos \theta = \frac { 1 \times 3 + 2 \times - 2 + 3 \times 1 } { \sqrt { 1 ^ { 2 } + 2 ^ { 2 } + 3 ^ { 2 } } \sqrt { 3 ^ { 2 } + ( - 2 ) ^ { 2 } + 1 ^ { 2 } } } =21414= \frac { 2 } { \sqrt { 14 } \sqrt { 14 } }

θ=cos1(17)\therefore \theta = \cos ^ { - 1 } \left( \frac { 1 } { 7 } \right).