Solveeit Logo

Question

Question: The angle between the lines 2x = 3y = – z and 6x = -y = -4z is: A.0° B.90° C.45° D.30°...

The angle between the lines 2x = 3y = – z and 6x = -y = -4z is:
A.0°
B.90°
C.45°
D.30°

Explanation

Solution

We will simplify the given equation of lines in the standard form of xa=yb=zc\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} where a, b and c are the direction ratios of the line. We will calculate the angle between these lines using the formula cosθ\theta = a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \sqrt {a_2^2 + b_2^2 + c_2^2} }} .

Complete step-by-step answer:
we are given two lines as 2x = 3y = – z and 6x = -y = -4z
We can write them in standard form xa=yb=zc\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}as:
For 2x = 3y = – z x1/2=y1/3=z1 \Rightarrow \dfrac{x}{{1/2}} = \dfrac{y}{{1/3}} = \dfrac{z}{{ - 1}}
Comparing this equation with the standard equation, we get the direction ratios of this line as:
a1a_1 = 12\dfrac{1}{2}, b1b_1 = 13\dfrac{1}{3}, c1c_1 = -1
For 6x = -y = -4z x1/6=y1=z1/4 \Rightarrow \dfrac{x}{{1/6}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 1/4}}
Comparing this equation with the standard equation, we get the direction ratios of this line as:
a2a_2 = 16\dfrac{1}{6} , b2b_2 = -1, c2c_2 = 14\dfrac{{ - 1}}{4}
Now, putting these values of a1a_1, a2a_2, b1b_1, b2b_2, c1c_1, and c2c_2 in the equation of cosθ\theta , we get
cosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22 cosθ=1216+13(1)+(1)(1)4(12)2+(13)2+(1)2(16)2+(1)2+(14)2  \Rightarrow \cos \theta = \dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \sqrt {a_2^2 + b_2^2 + c_2^2} }} \\\ \Rightarrow \cos \theta = \dfrac{{\dfrac{1}{2} \cdot \dfrac{1}{6} + \dfrac{1}{3} \cdot ( - 1) + ( - 1)\dfrac{{\left( { - 1} \right)}}{4}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} \\\
Upon simplifying this expression, we get
cosθ=11213+14(12)2+(13)2+(1)2(16)2+(1)2+(14)2=112112(12)2+(13)2+(1)2(16)2+(1)2+(14)2=0\Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{{12}}}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( {\dfrac{{ - 1}}{4}} \right)}^2}} }} = 0
cosθ=0\Rightarrow \cos \theta = 0
Operating cos1{\cos ^{ - 1}}both sides, we get
cos1(cosθ)=cos1(0) θ=90  \Rightarrow {\cos ^{ - 1}}\left( {\cos \theta } \right) = {\cos ^{ - 1}}\left( 0 \right) \\\ \Rightarrow \theta = {90^ \circ } \\\
(cos1\because {\cos ^{ - 1}} 0 = 90^ \circ )
Therefore, the angle between the lines 2x = 3y = – z and 6x = -y = -4z is 90^ \circ .
Hence, option (B) is correct.

Note: In such questions, you may get confused in the selection of the formula for calculating the angle between the given pair of the lines. Be careful in determining the direction ratios of the lines and after that, in the simplification of the expression of cosθ\theta by putting the values of the obtained direction ratios.