Solveeit Logo

Question

Question: The angle between the lines \[2x = 3y = - z\] and \[6x = - y = - 4z\] is A) \[{90^ \circ }\] B)...

The angle between the lines 2x=3y=z2x = 3y = - z and 6x=y=4z6x = - y = - 4z is
A) 90{90^ \circ }
B) 0{0^ \circ }
C) 30{30^ \circ }
D) 45{45^ \circ }

Explanation

Solution

Assume θ\theta as the angle between the lines. Then we will write the equation of the lines in standard form and the vectors parallel to the given lines are b1\overrightarrow {{b_1}} and b2\overrightarrow {{b_2}} . Then the angle between two lines is equal to the angle between b1\overrightarrow {{b_1}} and b2\overrightarrow {{b_2}} .

Complete step by step solution:
The given lines are
2x=3y=z2x = 3y = - z … (1)
And 6x=y=4z6x = - y = - 4z … (2)
Now, we will write the given equation of lines in standard form as:
Since, we can write 2x as x12\dfrac{x}{{\dfrac{1}{2}}}.
Therefore, 2x=x122x = \dfrac{x}{{\dfrac{1}{2}}}
And we can write 3y as y13\dfrac{y}{{\dfrac{1}{3}}}.
Therefore, 3y=y133y = \dfrac{y}{{\dfrac{1}{3}}}
Also, we can write – z as z1\dfrac{z}{{ - 1}}.
Therefore, z=z1 - z = \dfrac{z}{{ - 1}}
Therefore, the standard form of the equation (1)(1) is given by
x12=y13=z1\Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}} … (3)
Similarly, we can write 6x as x16\dfrac{x}{{\dfrac{1}{6}}} .
Therefore, 6x=x166x = \dfrac{x}{{\dfrac{1}{6}}}
-Y can be written as y1\dfrac{y}{{ - 1}}
Therefore, y=y1 - y = \dfrac{y}{{ - 1}}
And – 4z can be written as z4\dfrac{z}{{ - 4}}
Therefore, 4z=z4 - 4z = \dfrac{z}{{ - 4}}
Therefore, the standard form of the equation (2)(2) can be written as
x16=y1=z4\Rightarrow \dfrac{x}{{\dfrac{1}{6}}} = \dfrac{y}{{ - 1}} = \dfrac{z}{{ - 4}} … (4)
Since, the equation (3)(3) is
x12=y13=z1\Rightarrow \dfrac{x}{{\dfrac{1}{2}}} = \dfrac{y}{{\dfrac{1}{3}}} = \dfrac{z}{{ - 1}}
Let b1\overrightarrow {{b_1}} and b2\overrightarrow {{b_2}} be vectors parallel to equations (3)(3)and (4)(4)respectively.
First, we will write b1\overrightarrow {{b_1}} . The denominator of x in equation (3) will be the coefficient of i\mathop i\limits^ \wedge , the denominator of y in equation (3) will be the coefficient of j\mathop j\limits^ \wedge and the denominator of x in equation (3) will be the coefficient of k\mathop k\limits^ \wedge
b1=12i+13jk\Rightarrow \overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge … (5)
Similarly, we can write b2\overrightarrow {{b_2}}
b2=16ij14k\Rightarrow \overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge … (6)
If θ\theta is the angle between the given lines, then by using the following formula we can determine the value of θ\theta .
If θ\theta is the angle between the given lines, then
cosθ=b1b2b1b2\cos \theta = \dfrac{{\overrightarrow {{b_1}} \cdot \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} } \right|\left| {\overrightarrow {{b_2}} } \right|}} … (7)
Here b1=12i+13jk\overrightarrow {{b_1}} = \dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge , b2=16ij14k\overrightarrow {{b_2}} = \dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge
And b1\left| {\overrightarrow {{b_1}} } \right| can be determined by squaring and adding the coefficients of i\mathop i\limits^ \wedge , j\mathop j\limits^ \wedge and k\mathop k\limits^ \wedge and then we will take its square root
b1=(12)2+(13)2+(1)2\Rightarrow \left| {\overrightarrow {{b_1}} } \right| = \sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} … (8)
Similarly, we can determine b2\left| {\overrightarrow {{b_2}} } \right|
b2=(16)2+(1)2+(14)2\Rightarrow \left| {\overrightarrow {{b_2}} } \right| = \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{( - 1)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} … (9)
Putting the value of b1\overrightarrow {{b_1}} , b2\overrightarrow {{b_2}} , b1\left| {\overrightarrow {{b_1}} } \right| and b2\left| {\overrightarrow {{b_2}} } \right| from equations (6) , (7) , (8) and (9) respectively, we have
cosθ=(12i+13jk)(16ij14k)(12)2+(13)2+(1)2(16)2+(1)2+(14)2\Rightarrow \cos \theta = \dfrac{{\left( {\dfrac{1}{2}\mathop i\limits^ \wedge + \dfrac{1}{3}\mathop j\limits^ \wedge - \mathop k\limits^ \wedge } \right)\left( {\dfrac{1}{6}\mathop i\limits^ \wedge - \mathop j\limits^ \wedge - \dfrac{1}{4}\mathop k\limits^ \wedge } \right)}}{{\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{3}} \right)}^2} + {{\left( { - 1} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{6}} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - \dfrac{1}{4}} \right)}^2}} }}
On simplification, we get
cosθ=11213+1414+19+1136+1+116\Rightarrow \cos \theta = \dfrac{{\dfrac{1}{{12}} - \dfrac{1}{3} + \dfrac{1}{4}}}{{\sqrt {\dfrac{1}{4} + \dfrac{1}{9} + 1} \sqrt {\dfrac{1}{{36}} + 1 + \dfrac{1}{{16}}} }}
Now, we take LCM and simplify
cosθ=14+3129+4+36364+144+9144\Rightarrow \cos \theta = \dfrac{{\dfrac{{1 - 4 + 3}}{{12}}}}{{\sqrt {\dfrac{{9 + 4 + 36}}{{36}}} \sqrt {\dfrac{{4 + 144 + 9}}{{144}}} }}
On solving further, we get
cosθ=04936157144\Rightarrow \cos \theta = \dfrac{0}{{\sqrt {\dfrac{{49}}{{36}}} \sqrt {\dfrac{{157}}{{144}}} }}
So, we have
cosθ=076157144\Rightarrow \cos \theta = \dfrac{0}{{\dfrac{7}{6}\sqrt {\dfrac{{157}}{{144}}} }}
When 0 is divided by any non-zero value, the result will always be zero.
cosθ=0\Rightarrow \cos \theta = 0
Since cosθ=0\cos \theta = 0 at θ=90\theta = {90^ \circ }.
θ=90\Rightarrow \theta = {90^ \circ }
Therefore, the angle between the lines 2x=3y=z2x = 3y = - z and 6x=y=4z6x = - y = - 4z is 90{90^ \circ }.

Hence option A is correct.

Note:
Let the Cartesian equation of two lines be
xx1a1=yy1b1=zz1c1\dfrac{{x - {x_1}}}{{{a_1}}} = \dfrac{{y - {y_1}}}{{{b_1}}} = \dfrac{{z - {z_1}}}{{{c_1}}} … (a)
and xx2a2=yy2b2=zz2c2\dfrac{{x - {x_2}}}{{{a_2}}} = \dfrac{{y - {y_2}}}{{{b_2}}} = \dfrac{{z - {z_2}}}{{{c_2}}} … (b)
Therefore, vector parallel to line (a) is
m1=a1i+b1j+c1k{\vec m_1} = {a_1}\mathop i\limits^ \wedge + {b_1}\mathop j\limits^ \wedge + {c_1}\mathop k\limits^ \wedge
and vector parallel to line (b) is
m2=a2i+b2j+c2k{\vec m_2} = {a_2}\mathop i\limits^ \wedge + {b_2}\mathop j\limits^ \wedge + {c_2}\mathop k\limits^ \wedge
Let θ\theta is the angle between the lines (a) and (b). Then, θ\theta is also the angle between m1{\vec m_1} and m2{\vec m_2}.
Therefore, cosθ=m1m2m1m2\cos \theta = \dfrac{{\overrightarrow {{m_1}} \cdot \overrightarrow {{m_2}} }}{{\left| {\overrightarrow {{m_1}} } \right|\left| {\overrightarrow {{m_2}} } \right|}}