Solveeit Logo

Question

Question: The angle between the line \(\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\) and the plane \(3x + 2y - 3z ...

The angle between the line x2=y3=z4\frac{x}{2} = \frac{y}{3} = \frac{z}{4} and the plane 3x+2y3z=43x + 2y - 3z = 4is

A

4545{^\circ}

B

00{^\circ}

C

cos1(242922)\cos^{- 1}\left( \frac{24}{\sqrt{29}\sqrt{22}} \right)

D

9090{^\circ}

Answer

00{^\circ}

Explanation

Solution

Angle between the plane and line is

sinθ=aa+bb+cca2+b2+c2a2+b2+c2\sin \theta = \frac { a a ^ { \prime } + b b ^ { \prime } + c c ^ { \prime } } { \sqrt { a ^ { 2 } + b ^ { 2 } + c ^ { 2 } } \sqrt { a ^ { \prime 2 } + b ^ { \prime 2 } + c ^ { \prime 2 } } }

Here, aa+bb+cc=2×3+3×24×3=0a a ^ { \prime } + b b ^ { \prime } + c c ^ { \prime } = 2 \times 3 + 3 \times 2 - 4 \times 3 = 0

sinθ=0\therefore \sin \theta = 0