Solveeit Logo

Question

Mathematics Question on Angle between a Line and a Plane

The angle between the line 3x13=y+31\frac{3x-1}{3}=\frac{y+3}{-1} =52z4=\frac{5-2z}{4} and the plane 3x3y6z=103x-3y-6z=10 is equal to

A

π6\frac{\pi }{6}

B

π4\frac{\pi }{4}

C

π3\frac{\pi }{3}

D

π2\frac{\pi }{2}

Answer

π2\frac{\pi }{2}

Explanation

Solution

Given lines and planes are
3x13=y+31=52z4\frac{3x-1}{3}=\frac{y+3}{-1}=\frac{5-2z}{4} Or
x131=y+31=(z52)2\frac{x-\frac{1}{3}}{1}=\frac{y+3}{-1}=\frac{\left( z-\frac{5}{2} \right)}{-2} and 3x3y6z=03x-3y-6z=0
\Rightarrow xy2z=0x-y-2z=0
Here, a1=1,b1=1,c1=2{{a}_{1}}=1,{{b}_{1}}=-1,{{c}_{1}}=-2
and a2=1,b2=1,c2=2{{a}_{2}}=1,{{b}_{2}}=-1,{{c}_{2}}=-2
\therefore sinθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22\sin \theta =\frac{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
=1×1+(1)×(1)+(2)×(2)1+1+41+1+4=\frac{1\times 1+(-1)\times (-1)+(-2)\times (-2)}{\sqrt{1+1+4}\sqrt{1+1+4}}
=666=1=\frac{6}{\sqrt{6}\sqrt{6}}=1
\Rightarrow θ=π2\theta =\frac{\pi }{2}