Solveeit Logo

Question

Mathematics Question on Rate of Change of Quantities

The angle between the curves y2=4axy^2 = 4ax and ay=2x2ay = 2x^2 is

A

tan134\tan^{-1} \frac{3}{4}

B

tan135\tan^{-1} \frac{3}{5}

C

tan143\tan^{-1} \frac{4}{3}

D

tan153\tan^{-1} \frac{5}{3}

Answer

tan135\tan^{-1} \frac{3}{5}

Explanation

Solution

We have, y2=4axy^2 = 4ax .....(i)
and, ay=2x2ay = 2x^2 ....(ii)
Solving (i) and (ii), we get
x=ax = a and y=2ay = 2a
Differentiating (i) w.r.t x'x', we get
2ydydx=4a2y \frac{dy}{dx} = 4a
Now, [dydx](a,2a)=4a2(2a)=1\left[ \frac{dy}{dx} \right]_{(a,2a)} = \frac{4a}{2(2a)} = 1
m1=1\Rightarrow \:\:\: m_1 = 1
Now, differentiating (ii) w.r.t 'x', we get
adydx=4xa \frac{dy}{dx} = 4x
[dydx](a,2a)=4aa=1\Rightarrow \:\:\: \left[ \frac{dy}{dx} \right]_{(a,2a)} = \frac{4a}{a} = 1
m2=4\Rightarrow \:\: m_2 = 4
\because Angle between curves is equal to angle between their tangents.
tanθ=m2m11+m1m2tanθ=411+4×(1)\Rightarrow \:\: \tan \theta =\left|\frac{m_{2}-m_{1}}{1+m_{1}m_{2}}\right| \Rightarrow \tan \theta =\left|\frac{4-1}{1+4 \times\left(1\right)}\right|
tanθ=35θ=tan135\Rightarrow \:\: \tan \theta = \frac{3}{5} \Rightarrow \:\: \theta = \tan^{-1} \frac{3}{5}