Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

The angle between the circles x2+y24x6y3=0x^2+y^2−4x−6y−3=0, x2+y2+8x4y+11=0x^2+y^2+8x−4y+11=0

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

π3\frac{\pi}{3}

D

π6\frac{\pi}{6}

Answer

π3\frac{\pi}{3}

Explanation

Solution

The equation x2+y24x6y3=0x^2+y^2−4x−6y−3=0 corresponds to a circle with radius r1r_1​, which can be calculated as 22+32+32=16=4\sqrt{2^2+3^2+3^2​}=\sqrt{16}=4. The center of this circle is (2,3).

The equation x2+y2+8x4y+11=0x^2+y^2+8x−4y+11=0 represents a circle with radius r2r_2​, determined by 42+22112=3\sqrt{4^2+2^2−11^2}​=\sqrt{3}​. Its center is (−4,2).

To find the angle θ\theta between these two circles, we can use the cosine formula:
cos(180θ)=2r1r2r12+r22(c1c2)2\text{cos}(180−\theta)=\frac{2r_1​r_2​}{r_1^2​+r_2^2​−(c_1​c_2​)^2}​

Putting in the values:
cos(180θ)=24342+32(23)(42)\text{cos}(180−\theta)=\frac{2⋅4⋅3​}{4^2+3^2−(2⋅3)(−4⋅2)}
cos(180θ)=2425+37=2462=1231\text{cos}(180−\theta)=\frac{24}{25+37}=\frac{24}{62}​=\frac{12}{31}​

Now, to find θ\theta:
cos(θ)=12\text{cos}(\theta)=\frac{1}{2}
θ=π3\theta=\frac{\pi}{3}

Hence, the angle between these two circles is π3\frac{\pi}{3} or 60 degrees.