Solveeit Logo

Question

Question: The angle between ![](https://cdn.pureessence.tech/canvas_149.png?top_left_x=0&top_left_y=991&width=...

The angle between and B=i^j^\vec { B } = \hat { i } - \hat { j } is

A

4545 ^ { \circ }

B

9090 ^ { \circ }

C

45- 45 ^ { \circ }

D

180180 ^ { \circ }

Answer

9090 ^ { \circ }

Explanation

Solution

Given

A=(1)2+(1)2=2\therefore | \overrightarrow { \mathrm { A } } | = \sqrt { ( 1 ) ^ { 2 } + ( 1 ) ^ { 2 } } = \sqrt { 2 }and

B(1)2+(1)2=2| \overrightarrow { \mathrm { B } } | - \sqrt { ( 1 ) ^ { 2 } + ( - 1 ) ^ { 2 } } = \sqrt { 2 }

Letθ\thetabe angle between the vector A\overrightarrow { \mathrm { A } } and . Then according to definition of scalar product (or dot product) AB=ABcosθ\overrightarrow { \mathrm { A } } \cdot \overrightarrow { \mathrm { B } } = | \overrightarrow { \mathrm { A } } | | \overrightarrow { \mathrm { B } } | \cos \theta

Or cosθABAB=(i^+j^)(i^j^)(2)(2)=0\cos \theta \frac { \vec { A } \cdot \vec { B } } { | \vec { A } | | \vec { B } | } = \frac { ( \hat { i } + \hat { j } ) \cdot ( \hat { i } - \hat { j } ) } { ( \sqrt { 2 } ) ( \sqrt { 2 } ) } = 0

θ=cos1(0)=90\therefore \theta = \cos ^ { - 1 } ( 0 ) = 90 ^ { \circ }