Solveeit Logo

Question

Question: The angle between lines joining the origin to the points of intersection of the line \(\sqrt{3}\)x +...

The angle between lines joining the origin to the points of intersection of the line 3\sqrt{3}x + y = 2 and the curve y2 - x2 = 4 is:

A

tan1(23)\tan^{- 1}\left( \frac{2}{\sqrt{3}} \right)

B

π6\frac{\pi}{6}

C

tan1(32)\tan^{- 1}\left( \frac{\sqrt{3}}{2} \right)

D

π2\frac{\pi}{2}

Answer

tan1(32)\tan^{- 1}\left( \frac{\sqrt{3}}{2} \right)

Explanation

Solution

On homogenizing y2 - x2 = 4 with help of the line 3\sqrt{3}x + y = 2

y2 - x2 = 4(3x+y)24\frac{(\sqrt{3}x + y)^{2}}{4}

⇒ y2 - x2 = 3x2 + y2 + 23\sqrt{3} xy

⇒ 4x2 + 23\sqrt{3} xy = 0

tanθ = 2h2aba+b\frac{2\sqrt{h^{2} - ab}}{a + b}

tanθ=2304\tan\theta = \frac{2\sqrt{3 - 0}}{4}

θ = tan-1 (32)\left( \frac{\sqrt{3}}{2} \right).