Solveeit Logo

Question

Question: The angle between a pair of tangents drawn from a point P to the circle \(x ^ { 2 } + y ^ { 2 } + 4 ...

The angle between a pair of tangents drawn from a point P to the circle x2+y2+4x6y+9sin2α+13cos2α=0x ^ { 2 } + y ^ { 2 } + 4 x - 6 y + 9 \sin ^ { 2 } \alpha + 13 \cos ^ { 2 } \alpha = 0 is 2α2 \alpha The equation of the locus of the point P is

A

x2+y2+4x6y+4=0x ^ { 2 } + y ^ { 2 } + 4 x - 6 y + 4 = 0

B

x2+y2+4x6y9=0x ^ { 2 } + y ^ { 2 } + 4 x - 6 y - 9 = 0

C

x2+y2+4x6y4=0x ^ { 2 } + y ^ { 2 } + 4 x - 6 y - 4 = 0

D

x2+y2+4x6y+9=0x ^ { 2 } + y ^ { 2 } + 4 x - 6 y + 9 = 0

Answer

x2+y2+4x6y+9=0x ^ { 2 } + y ^ { 2 } + 4 x - 6 y + 9 = 0

Explanation

Solution

The centre of the circle

C(2,3)C ( - 2,3 ) and its radius is 22+(3)29sin2α13cos2α\sqrt { 2 ^ { 2 } + ( - 3 ) ^ { 2 } - 9 \sin ^ { 2 } \alpha - 13 \cos ^ { 2 } \alpha }

=4+99sin2α13cos2α=2sinα= \sqrt { 4 + 9 - 9 \sin ^ { 2 } \alpha - 13 \cos ^ { 2 } \alpha } = 2 \sin \alpha

Let P (h, k) be any point on the locus. The PAC=π/2\angle P A C = \pi / 2 i.e. triangle APC is a right angle triangle.

Thus sinα=ACPC=2sinα(h+2)2+(k3)2\sin \alpha = \frac { A C } { P C } = \frac { 2 \sin \alpha } { \sqrt { ( h + 2 ) ^ { 2 } + ( k - 3 ) ^ { 2 } } }

h2+k2+4h6k+9=0h ^ { 2 } + k ^ { 2 } + 4 h - 6 k + 9 = 0Thus the required equation of the locus is x2+y2+4x6y+9=0x ^ { 2 } + y ^ { 2 } + 4 x - 6 y + 9 = 0