Solveeit Logo

Question

Physics Question on LCR Circuit

The amplitude of the charge oscillating in a circuit decreases exponentially as Q=Q0eRt/2LQ = Q_0 e^{-Rt/2L}, where Q0Q_0 is the charge at t=0st=0s. The time at which charge amplitude decreases to 0.50 Q0Q_0 is nearly:
[Given that R=15ΩR = 15 \Omega, L=12mHL = 12 mH, ln(2)=0.693ln(2) = 0.693]

A

19.01 ms

B

11.09 ms

C

19.01 s

D

11.09 s

Answer

11.09 ms

Explanation

Solution

Given: Q=Q0eRt/2LQ = Q_0 e^{-Rt/2L}

When Q=0.50Q0Q = 0.50 Q_0:

0.50Q0=Q0eRt/2L0.50 Q_0 = Q_0 e^{-Rt/2L}

0.50=eRt/2L0.50 = e^{-Rt/2L}

ln(0.50)=Rt2L\ln(0.50) = -\frac{Rt}{2L}

ln(12)=Rt2L\ln\left(\frac{1}{2}\right) = -\frac{Rt}{2L}

ln2=Rt2L-\ln 2 = -\frac{Rt}{2L}

t=2Lln2Rt = \frac{2L \ln 2}{R}
Given: R=1.5ΩR = 1.5 \, \Omega, L=12mH=12×103HL = 12 \, \text{mH} = 12 \times 10^{-3} \, H, ln2=0.693\ln 2 = 0.693
t=2(12×103H)(0.693)1.5Ω11.088×103s11.09mst = \frac{2(12 \times 10^{-3} \, H)(0.693)}{1.5 \, \Omega} \approx 11.088 \times 10^{-3} \, s \approx 11.09 \, ms