Solveeit Logo

Question

Question: The amplitude of \(\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)\)...

The amplitude of sinπ5+i(1cosπ5)\sin\frac{\pi}{5} + i\left( 1 - \cos\frac{\pi}{5} \right)

A

π/5\pi/5

B

2π/52\pi/5

C

π/10\pi/10

D

π/15\pi/15

Answer

π/10\pi/10

Explanation

Solution

Sol.

sinπ5+i(1cosπ5)=2sinπ10.cosπ10+i2sin2π10\sin\frac{\pi}{5} + i(1 - \cos\frac{\pi}{5}) = 2\sin\frac{\pi}{10}.\cos\frac{\pi}{10} + i2\sin^{2}\frac{\pi}{10} $$= 2\sin\frac{\pi}{10}\left( \cos\frac{\pi}{10} + i\sin\frac{\pi}{10} \right)

For amplitude, tanθ=sinπ10cosπ10=tanπ10θ=π10.\tan\theta = \frac{\sin\frac{\pi}{10}}{\cos\frac{\pi}{10}} = \tan\frac{\pi}{10} \Rightarrow \theta = \frac{\pi}{10}.