Solveeit Logo

Question

Mathematics Question on argand plane

The amplitude of sinπ5+i(1cosπ5)\sin \frac{\pi}{5} + i\left( 1 - \cos \frac{\pi}{5}\right)

A

2π5\frac{2\pi}{5}

B

π5\frac{\pi}{5}

C

π15\frac{\pi}{15}

D

π10\frac{\pi}{10}

Answer

π10\frac{\pi}{10}

Explanation

Solution

Let Z=sinπ5+i(1cosπ5)Z = \sin \frac{\pi}{5} + i\left( 1 - \cos \frac{\pi}{5}\right)
Putting sinπ5=rcosθ\sin \frac{\pi}{5} =r \cos \theta ...(i)
and 1cosπ5=rsinθ1 -\cos \frac{\pi}{5} = r \sin \theta...(ii)
tanθ=1cosπ5sinπ5=2sin2π102sinπ10cosπ10\therefore\:\:\:\: \tan \theta = \frac{1-\cos \frac{\pi}{5}}{\sin \frac{\pi}{5}} = \frac{ 2 \sin^{2} \frac{\pi}{10}}{2 \sin \frac{\pi}{10} \cos \frac{\pi}{10}}
tanθ=tanπ10θ=π10\Rightarrow \tan \theta = \tan \frac{\pi}{10} \Rightarrow \theta = \frac{\pi}{10}