Solveeit Logo

Question

Question: The amplitude of \[\sin \dfrac{\pi }{5} + i\left( {1 - \cos \dfrac{\pi }{5}} \right)\] is…...

The amplitude of sinπ5+i(1cosπ5)\sin \dfrac{\pi }{5} + i\left( {1 - \cos \dfrac{\pi }{5}} \right) is…

Explanation

Solution

We are given a complex number form of trigonometric function commonly known as Euler's formula that gives the relation between trigonometric functions and the complex exponential function. We will use this relation to find the amplitude of the given function.

Complete step by step answer:
Given is the expression,
sinπ5+i(1cosπ5)\sin \dfrac{\pi }{5} + i\left( {1 - \cos \dfrac{\pi }{5}} \right)
We know that, 1cos2θ=2sin2θ1 - \cos 2\theta = 2{\sin ^2}\theta and sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
Using these we can write,
z=2sinπ10cosπ10+i2sin2π10z = 2\sin \dfrac{\pi }{{10}}\cos \dfrac{\pi }{{10}} + i2{\sin ^2}\dfrac{\pi }{{10}}
Now taking the sin function along with 2 common,
z=2sinπ10(cosπ10+isinπ10)z = 2\sin \dfrac{\pi }{{10}}\left( {\cos \dfrac{\pi }{{10}} + i\sin \dfrac{\pi }{{10}}} \right)
As we mentioned above Euler’s formula cosθ+isinθ=eiθ\cos \theta + i\sin \theta = {e^{i\theta }} gives the relation between trigonometric functions and the complex exponential function
Thus, the bracket can be written as,
z=2sinπ10(eiπ10)z = 2\sin \dfrac{\pi }{{10}}\left( {{e^{i\dfrac{\pi }{{10}}}}} \right)
We know that amplitude is given by,
z=2sinπ10(eiπ10)\left| z \right| = \left| {2\sin \dfrac{\pi }{{10}}\left( {{e^{i\dfrac{\pi }{{10}}}}} \right)} \right|
But, eiθ=1.....θ\left| {{e^{i\theta }}} \right| = 1.....\forall \theta
Thus we can write,
z=2sinπ10\left| z \right| = 2\sin \dfrac{\pi }{{10}}
We know that the value of sin angle is,
z=2(514)\left| z \right| = 2\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)
Cancelling 4 with 2,
z=512\left| z \right| = \dfrac{{\sqrt 5 - 1}}{2}
This is the amplitude of the function above.
Therefore, the amplitude of sinπ5+i(1cosπ5)\sin \dfrac{\pi }{5} + i\left( {1 - \cos \dfrac{\pi }{5}} \right) is 512\dfrac{{\sqrt 5 - 1}}{2}.

Note:
Note that, zz is the significance of the number to be complex. So we used that letter. The amplitude for such function is given by the modulus sign and for purely complex numbers of the form x+iy it is given by, θ=tan1(yx)\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right) such that r=cosθ+isinθr = \cos \theta + i\sin \theta is the polar form of the complex number.