Question
Question: The amplitude of $\frac{(1+i)}{(1+i\sqrt{3})}$...
The amplitude of (1+i3)(1+i)

−12π
Solution
To find the amplitude (argument) of the complex number Z=(1+i3)(1+i), we can use the property that arg(Z2Z1)=arg(Z1)−arg(Z2).
Let Z1=1+i and Z2=1+i3.
-
Find the amplitude of Z1=1+i:
The complex number 1+i lies in the first quadrant.
The argument arg(Z1) is given by tan−1(real partimaginary part).
arg(Z1)=tan−1(11)=tan−1(1)=4π. -
Find the amplitude of Z2=1+i3:
The complex number 1+i3 also lies in the first quadrant.
The argument arg(Z2) is given by tan−1(real partimaginary part).
arg(Z2)=tan−1(13)=tan−1(3)=3π. -
Calculate the amplitude of Z=Z2Z1:
arg(Z)=arg(Z1)−arg(Z2)
arg(Z)=4π−3π
To subtract these fractions, find a common denominator, which is 12:
arg(Z)=123π−124π
arg(Z)=−12π
The principal amplitude (argument) is typically given in the interval (−π,π]. Our result −12π falls within this interval.
Alternatively, we can convert the complex numbers to polar form first:
Z1=1+i=12+12(cos(4π)+isin(4π))=2(cos(4π)+isin(4π))
Z2=1+i3=12+(3)2(cos(3π)+isin(3π))=2(cos(3π)+isin(3π))
Then, Z=Z2Z1=2(cos(3π)+isin(3π))2(cos(4π)+isin(4π))
Using the property r2(cosθ2+isinθ2)r1(cosθ1+isinθ1)=r2r1(cos(θ1−θ2)+isin(θ1−θ2)):
Z=22(cos(4π−3π)+isin(4π−3π))
Z=21(cos(−12π)+isin(−12π))
From this polar form, the amplitude is clearly −12π.