Solveeit Logo

Question

Question: The amplitude of electric field in a parallel light beam of intensity 4 Wm^-2 is?...

The amplitude of electric field in a parallel light beam of intensity 4 Wm^-2 is?

Answer

54.9 V/m

Explanation

Solution

The intensity ( II ) of a parallel light beam (an electromagnetic wave) is related to the amplitude of the electric field ( E0E_0 ) by the formula:

I=12cϵ0E02I = \frac{1}{2} c \epsilon_0 E_0^2

Where:

  • II is the intensity of the light beam.
  • cc is the speed of light in vacuum (3×108 m/s3 \times 10^8 \text{ m/s}).
  • ϵ0\epsilon_0 is the permittivity of free space (8.854×1012 C2N1m28.854 \times 10^{-12} \text{ C}^2\text{N}^{-1}\text{m}^{-2} or F/m\text{F/m}).
  • E0E_0 is the amplitude of the electric field.

We are given: I=4 Wm2I = 4 \text{ Wm}^{-2}

We need to find E0E_0. Rearranging the formula to solve for E0E_0:

E02=2Icϵ0E_0^2 = \frac{2I}{c \epsilon_0} E0=2Icϵ0E_0 = \sqrt{\frac{2I}{c \epsilon_0}}

Now, substitute the given values and constants into the formula:

E0=2×4(3×108 m/s)×(8.854×1012 F/m)E_0 = \sqrt{\frac{2 \times 4}{(3 \times 10^8 \text{ m/s}) \times (8.854 \times 10^{-12} \text{ F/m})}} E0=826.562×104E_0 = \sqrt{\frac{8}{26.562 \times 10^{-4}}} E0=80.0026562E_0 = \sqrt{\frac{8}{0.0026562}} E0=3011.064E_0 = \sqrt{3011.064} E054.87 V/mE_0 \approx 54.87 \text{ V/m}

The amplitude of the electric field is approximately 54.9 V/m.