Solveeit Logo

Question

Question: The amplitude of \[{{e}^{{{e}^{-i\theta }}}},\text{where }\theta \in R\text{ and }i=\sqrt{-1}\] is: ...

The amplitude of eeiθ,where θR and i=1{{e}^{{{e}^{-i\theta }}}},\text{where }\theta \in R\text{ and }i=\sqrt{-1} is:
(a) sinθ\sin \theta
(b) sinθ-\sin \theta
(c) ecosθ{{e}^{\cos \theta }}
(d) esinθ{{e}^{\sin \theta }}

Explanation

Solution

First of all use eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta in the given expression by replacing θ with (θ)\theta \text{ with }\left( -\theta \right). Now use ax+y=ax.ay{{a}^{x+y}}={{a}^{x}}.{{a}^{y}} and separate the expression in two terms that is, ecosθ.eisin(θ){{e}^{\cos \theta }}.{{e}^{i\sin \left( -\theta \right)}}. Now, again use eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta and then compare it with z = x + iy and use tanα=yx\tan \alpha =\dfrac{y}{x} where α\alpha is the amplitude of the given expression.

Complete step-by-step answer:
In this question, we have to find the amplitude of eeiθ{{e}^{{{e}^{-i\theta }}}}. First of all, we know that we can write any complex number z = x + iy as reiθr{{e}^{i\theta }} where r is the modulus of z and θ\theta is the amplitude or argument of z. Also,
eiθ=cosθ+isinθ....(i){{e}^{i\theta }}=\cos \theta +i\sin \theta ....\left( i \right)
Let us consider the expression given in the question.
E=eeiθE={{e}^{{{e}^{-i\theta }}}}
By using equation (i) and replacing θ by (θ)\theta \text{ by }\left( -\theta \right) in it, we get,
E=e[cos(θ)+isin(θ)]E={{e}^{\left[ \cos \left( -\theta \right)+i\sin \left( -\theta \right) \right]}}
We know that ax+y=ax.ay{{a}^{x+y}}={{a}^{x}}.{{a}^{y}}. By using this in the above expression, we get,
E=ecos(θ).eisin(θ)E={{e}^{\cos \left( -\theta \right)}}.{{e}^{i\sin \left( -\theta \right)}}
We know that cos (– x) = cos x. By using this, we get,
E=ecosθ.eisin(θ)....(ii)E={{e}^{\cos \theta }}.{{e}^{i\sin \left( -\theta \right)}}....\left( ii \right)
By again using equation (i) and considering θ=sin(θ)\theta =\sin \left( -\theta \right) in it, we get,
E=ecosθ[cos(sin(θ))+isin[sin(θ)]]E={{e}^{\cos \theta }}\left[ \cos \left( \sin \left( -\theta \right) \right)+i\sin \left[ \sin \left( -\theta \right) \right] \right]
E=ecosθcos[sin(θ)]+iecosθsin[sin(θ)]E={{e}^{\cos \theta }}\cos \left[ \sin \left( -\theta \right) \right]+i{{e}^{\cos \theta }}\sin \left[ \sin \left( -\theta \right) \right]
Let us compare the above complex number with the general complex number z = x + iy. From this, we get,
x=ecosθcos[sin(θ)]....(iii)x={{e}^{\cos \theta }}\cos \left[ \sin \left( -\theta \right) \right]....\left( iii \right)
y=ecosθsin[sin(θ)]....(iv)y={{e}^{\cos \theta }}\sin \left[ \sin \left( -\theta \right) \right]....\left( iv \right)
We know that if the amplitude of z = x + iy is α\alpha , then tanα=yx\tan \alpha =\dfrac{y}{x}. So, by substituting y and x from equation (iv) and (iii) respectively, we get,
tanα=ecossin[sin(θ)]ecosθcos[sin(θ)]\tan \alpha =\dfrac{{{e}^{\cos }}\sin \left[ \sin \left( -\theta \right) \right]}{{{e}^{\cos \theta }}\cos \left[ \sin \left( -\theta \right) \right]}
By canceling the like terms from the above equation, we get,
tanα=sin[sin(θ)]cos[sin(θ)]\tan \alpha =\dfrac{\sin \left[ \sin \left( -\theta \right) \right]}{\cos \left[ \sin \left( -\theta \right) \right]}
We know that sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x. By using this in the above equation and considering x=sin(θ)x=\sin \left( -\theta \right), we get,
tanα=tan[sin(θ)]\tan \alpha =\tan \left[ \sin \left( -\theta \right) \right]
By comparing the LHS and RHS of the above equation, we get,
α=sin(θ)\alpha =\sin \left( -\theta \right)
We know that sin (– x) = – sin x. By using this, we get,
α=sinθ\alpha =-\sin \theta
So, we get the amplitude of eeiθ as sinθ{{e}^{{{e}^{-i\theta }}}}\text{ as }-\sin \theta .
Hence, option (b) is the right answer.

Note: In this question, many students get confused between amplitude, argument, and modulus of complex numbers. So, they must note that in any general complex number of the form reiθr{{e}^{i\theta }}, r is the modulus of a complex number and θ\theta is the argument or amplitude of complex numbers. In the above question, students can also directly find the amplitude by comparing the expression of equation (ii) that is ecosθ.eisin(θ){{e}^{\cos \theta }}.{{e}^{i\sin \left( -\theta \right)}} by reiθr{{e}^{i\theta }}. Here, r=ecosθ and θ=sin(θ)r={{e}^{\cos \theta }}\text{ and }\theta =\sin \left( -\theta \right) which is our amplitude.