Solveeit Logo

Question

Physics Question on Energy in simple harmonic motion

The amplitude of a particle executing SHM is 4 cm. At the mean position the speed of the particle is 16 cm/sec. The distance of the particle from the mean position at which the speed of the particle becomes 3.5×104K3.5\times {{10}^{4}}K cm/s, will be :

A

5.8×104K5.8\times {{10}^{4}}K

B

14 ×104 K\text{14 }\times \,\,\text{1}{{0}^{\text{4}}}\text{ K}

C

1 cm

D

2 cm

Answer

2 cm

Explanation

Solution

At the mean position, the speed will be maximum =n×12mυ2t=\frac{n\times \frac{1}{2}m{{\upsilon }^{2}}}{t} So, =360×12×2×102×(100)260=\frac{360\times \frac{1}{2}\times 2\times {{10}^{-2}}\times {{(100)}^{2}}}{60} and g=GmR2g=\frac{Gm}{{{R}^{2}}} (Here:Mm=Me9,RmRe2)\left( \text{Here}:{{M}_{m}}=\frac{{{M}_{e}}}{9},{{R}_{m}}\frac{{{R}_{e}}}{2} \right) or \overrightarrow{\text{F}}=\left( \text{2\hat{i}}+\text{4\hat{j}} \right) or \overrightarrow{S}=\left( \text{3\hat{j}}+\text{5\hat{k}} \right)\text{m} or υA{{\upsilon }_{A}}