Solveeit Logo

Question

Mathematics Question on argand plane

The amplitude of (1+i)5(1+i)^5 is

A

3π4\frac {3 \pi}{4}

B

3π4\frac {-3 \pi}{4}

C

5π4\frac {-5 \pi}{4}

D

5π4\frac {5 \pi}{4}

Answer

5π4\frac {5 \pi}{4}

Explanation

Solution

Given, (1+i)5\left(1 + i\right)^{5}
=(2)5(12+i2)5= \left(\sqrt{2}\right)^{5} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{5}
=(2)5(cosπ4+isinπ4)5= \left(\sqrt{2}\right)^{5} \left(\cos \frac{\pi}{4} +i \sin \frac{\pi}{4}\right)^{5}
=(2)5(cos5π4+isin5π4)= \left(\sqrt{2}\right)^{5} \left(\cos \frac{5 \pi}{4} + i \sin \frac{5\pi}{4}\right)
[by De-Moivre?s theorem]
Now, amplitude =tan1(yx)= \tan^{-1} \left(\frac{y}{x}\right)
=tan1(sin5π/4cos5π/4)=5π4= \tan^{-1} \left(\frac{\sin 5\pi /4}{\cos 5 \pi /4}\right) = \frac{5\pi}{4}